2021-2022学年湖北省荆州市江陵县岑河镇岑河中学高三数学理期末试卷含解析_第1页
2021-2022学年湖北省荆州市江陵县岑河镇岑河中学高三数学理期末试卷含解析_第2页
2021-2022学年湖北省荆州市江陵县岑河镇岑河中学高三数学理期末试卷含解析_第3页
2021-2022学年湖北省荆州市江陵县岑河镇岑河中学高三数学理期末试卷含解析_第4页
2021-2022学年湖北省荆州市江陵县岑河镇岑河中学高三数学理期末试卷含解析_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022学年湖北省荆州市江陵县岑河镇岑河中学高三数学理期末试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知P是ABC所在的平面内一点,AB=4,,若点D、E分别满足,则=A8BC4D8参考答案:D略2. 等比数列an中,则“”是“”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件参考答案:B3. 已知sin=,sin=,且,均为锐角,则+的值为( )ABC或D参考答案:A【考点】两角和与差的余弦函数 【专题】三角函数的求值【分析】由条件利用同角三角函数的基本关系、两角和差的余

2、弦公式求得cos(+)的值,可得+的值【解答】解:sin=,sin=,且,均为锐角,cos=,cos=,cos(+)=coscossinsin=,结合+(0,),求得+=,故选:A【点评】本题主要考查同角三角函数的基本关系、两角和差的余弦公式的应用,属于基础题4. 若复数为纯虚数,则的虚部为( )A. B. C. D.参考答案:C略5. 已知ABC中,,,|=3,|=5,则与的夹角为()A、30B、-150 C、150D、30或150参考答案:C6. 已知双曲线,过其右焦点且垂直于实轴的直线与双曲线交于M、N两点,O是坐标原点若,则双曲线的离心率为 ( ) A B C D参考答案:C7. 已知

3、函数在上是减函数,则的取值范围是( )A B C D 参考答案:A8. 设集合,则A B C D参考答案:A9. 下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:空调类冰箱类小家电类其它类营业收入占比净利润占比则下列判断中不正确的是( )A. 该公司2018年度冰箱类电器营销亏损B. 该公司2018年度小家电类电器营业收入和净利润相同C. 该公司2018年度净利润主要由空调类电器销售提供D. 剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低参考答案:B【分析】结合表中数据,对选项逐个分析即可得到答案。【详解】因为冰箱类电器净利润占比为负的,所

4、以选项A正确;因为营业收入-成本=净利润,该公司2018年度小家电类电器营业收入占比和净利润占比相同,而分母不同,所以该公司2018年度小家电类电器营业收入和净利润不可能相同,故选项B错误;由于小家电类和其它类的净利润占比很低,冰箱类的净利润是负值,而空调类净利润占比达到,故该公司2018年度净利润主要由空调类电器销售提供,即选项C正确;因为该公司2018年度空调类电器销售净利润不变,而剔除冰箱类电器销售数据后,总利润变大,故2018年度空调类电器销售净利润占比将会降低,即选项D正确。故答案为B.【点睛】本题考查了统计表格的识别,比例关系的判断,实际问题的解决,属于基础题。10. (2) 设变

5、量x, y满足约束条件则目标函数z = y2x的最小值为(A) 7(B) 4(C) 1(D) 2参考答案:A二、 填空题:本大题共7小题,每小题4分,共28分11. 直线L的参数方程为(t为 参数),则直线L的倾斜角为 参考答案:考点:参数方程化成普通方程 专题:坐标系和参数方程分析:首先把直线的参数方程转化成直角坐标方程,进一步利用直线的倾斜角和斜率的关系求出结果解答:解:线L的参数方程为(t为 参数),转化成直角坐标方程为:y=,设直线的倾斜角为,则:tan由于直线倾斜角的范围为:0,)所以:故答案为:点评:本题考查的知识要点:直线的参数方程与直角坐标方程的互化,直线的倾斜角和斜率的关系1

6、2. 若变量x,y满足,则x2+y2的最小值是 参考答案:1【考点】简单线性规划【分析】画出可行域,目标函数z=x2+y2是可行域中的点(0,1)到原点的距离的平方,利用线性规划进行求解【解答】解:变量x,y满足,如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(0,1)到原点的距离的平方,即|AO|2=1,即x2+y2的最小值是:1故答案为:113. 函数的定义域为 。参考答案:由,所以函数的定义域为。14. 已知定义在R上的函数是周期函数,且满足,函数的最小正周期为 .参考答案:略15. 现有三个小球全部随机放入三个盒子中,设随机变量为三个盒子中含球最多的盒子里

7、的球数,则的数学期望为 参考答案:略16. 函数y的定义域是 参考答案:(1,2) 17. 设ABC的三个内角A,B,C所对应的边为a,b,c,若A,B,C依次成等差数列且a2+c2=kb2,则实数k的取值范围是参考答案:(1,2【考点】余弦定理【分析】利用角A、B、C成等差数列B=,利用a2+c2=kb2,可得k=sin(2A)+,即可利用正弦函数的性质求得实数k的取值范围【解答】解:A+B+C=,且角A、B、C成等差数列,B=(A+C)=2B,解之得B=,a2+c2=kb2,sin2A+sin2C=ksin2B=,k= sin2A+sin2(A)= sin2A+cos2A+sinAcosA

8、)= sin(2A)+,0A,2A,sin(2A)1,1sin(2A)+2,实数k的取值范围是(1,2故答案为:(1,2三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为=6sin(1)求圆C的直角坐标方程;(2)若点P(1,2),设圆C与直线l交于点A,B,求|PA|+|PB|的最小值参考答案:【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程【分析】(1)由=6sin得2=6sin,利用

9、互化公式可得直角坐标方程(2)将l的参数方程代入圆C的直角坐标方程,得t2+2(cossin)t7=0,利用根与系数的关系、弦长公式即可得出【解答】解:(1)由=6sin得2=6sin,化为直角坐标方程为x2+y2=6y,即x2+(y3)2=9(2)将l的参数方程代入圆C的直角坐标方程,得t2+2(cossin)t7=0,由=(2cos2sin)2+470,故可设t1,t2是上述方程的两根,又直线过点(1,2),故结合t的几何意义得=,|PA|+|PB|的最小值为19. (本题12分)已知函数,其图象的对称轴与邻近对称中心间的距离为。 (1)求函数的单调递增区间。 (2)设函数在上的最小值为,

10、求函数的值域。参考答案:解:=因为图象的对称轴与邻近对称中心间的距离为,所以,即所以(1)由得所以的单调递增区间为(2)因为,所以当时所以,函数的值域为20. (本小题满分12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出盒该产品获利润元;未售出的产品,每盒亏损元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了 盒该产品,以(单位:盒,)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量的中位数;(2)将表示为的函数;(3)根据直方图估计利润不少于元的概率.参考答案:(1);(2);(3).(2)因为每售出盒该产品获利润元,未售出的产品,每盒亏损 元,所以当 时, , 当 时, 所以 .(3)因为利润不少于 元,所以 ,解得 ,所以由(1)知利润不少于 元的概率 . 考点:1.频率分布直方图;2.对立事件的概率.21. (本小题满分12分)在中,(I) 求的值: (II) 求的值参考答案:()解:在ABC中,根据正弦定理,于是AB=()解:在ABC中,根据余弦定理,得cosA=于是 sinA=从而sin2A=2sinAcosA=,cos2A=cos2A-s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论