恒流方案大全_第1页
恒流方案大全_第2页
恒流方案大全_第3页
恒流方案大全_第4页
恒流方案大全_第5页
已阅读5页,还剩59页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、恒流方案大全恒流源是电路中普遍利用的一个组件,那个地址我整理一下比较常见的恒流源的结构和特点。恒流源分为流出(CurrentSource)和流入(CurrentSink)两种形式。最简单的恒流源,确实是用一只恒流二极管。事实上,恒流二极管的应用是比较少的,除因为恒流二极管的恒流特性并非是超级好之外,电流规格比较少,价钱比较贵也是重要缘故。最经常使用的简易恒流源如图所示,用两只同型三极管,利用三极管相对稳固的be电压作为基准,电流数值为:I=Vbe/R1。这种恒流源优势是简单易行,而且电流的数值能够自由操纵,也没有利用特殊的元件,有利于降低产品的本钱。缺点是不同型号的管子,其be电压不是一个固定

2、值,即便是相同型号,也有必然的个体不同。同时不同的工作电流下,那个电压也会有必然的波动。因此不适合周为了能够精准输出电流,通常利用一个运放作为反馈,同时利用处效应管幸免三极管的be电流致使的误差。典型的运放恒流源如图所示,若是电流不需要专门精准,其中的场效应管也能够用三极管代替。电流计算公式为:I=Vin/R1T+7+LM谨寸R2L1I3S3D那个电路能够以为是恒流源的标准电路,除足够的精度和可调性之外,利用的元件也都是很普遍的,易于搭建和调试。只只是其中的Vin还需要用户额外提供。从以上两个电路能够看出,恒流源有个定式(寒,“定式”仿佛是围棋术语XD),确实是利用一个电压基准,在电阻上形成固

3、定电流。有了那个定式,恒流源的搭建就能够够扩展到所有能够提供那个“电压基准”的器件上。最简单的电压基准,确实是稳压二极管,利用稳压二极管和一只三极管,能够搭建一个更简易的恒流源。如图所示:电流计算公式为:I=(Vd-Vbe)/R1TL431是另外一个经常使用的电压基准,利用TL431搭建的恒流源如图(4)所示,其中的三极管替换为场效应管能够取得更好的精度。TL431组成流出源的电路,临时我还没想到:)TL431的其他信息请参考和电流计算公式为:I=R1事实上,所有的三端稳压,都是很不错的电压源,而且三端稳压的精度已经很高,需要的维持电流也很小。利用三端稳压组成恒流源,也有超级好的性价比,如图所

4、示。这种结构的恒流源,不适合过小的电流,因为那个时候,三端稳压自身的维持电流会致使较大的误差。电流计算公式为:I=V/R1,其中V是三端稳压的稳压数值。实际的电路中,有一些特殊的结构,也能够提供专门好的恒流特性,最典型的确实是一个很高的电压通过一个电阻在一个低压设备上形成电流,如图,那个恒流源的精度,取决于高压的精准度和低压设备本身致使的电压波动。在一些开关电源电路中,那个结构用来给三极管提供偏置电流。电流计算公式为:I=Vin/R1Vccf远大于负载电庄i1匚I值得一提的是,以上这些恒流源并非都适合安培以上级别的恒流应用,因为电阻上面太大的电流会致使发烧严峻。图能够通过利用更小的电阻来降低那

5、个热量,只是在单电源供电模式下,多数运放都不能有效检测和输出接近地或Vcc的电压,因此必需利用特殊的器件才能达到要求。有个简单的方法是通过一个稳压器件(稳压管,或TL431等)偏置电阻上面的电压,使得那个电压进入运放的检测范围。恒流源的实质是利用器件对电流进行反馈,动态调剂设备的供电状态,从而使得电流趋于恒定。只要能够取得电流,就能够够有效形成反馈,从而成立恒流源。能够进行电流反馈的器件,还有电流互感器,或利用霍尔元件对电流回路上某些器件的磁场进行反馈,也能够利用回路上的发光器件(例如光电耦合器,发光管等)进行反馈。这些方式都能够组成有效的恒流源,而且更适合大电流等特殊场合,只是因为这些实现形

6、式的电路都比较复杂,那个地址就不一一介绍了。在高级的小功率LED产品中也会用到LED恒流源电源。拿到一个LED电源,找到名牌参数。小功率LED光条方面比较多。可不能隋负载的转变而转变,通常应用在小功率的LED模组,。可不能隋负载的转变而转变,通常应用在大功率的LED产品上面。我想还有很多的朋友不必然明白。咱们别离作出分析:1)恒压源电源的在允许的负载情况下,输出的电压是恒定的,不会隋负载的变化而变化,通常应用在小功率的模组,小功率LED光条方面比较多。2)恒流源电源在允许的负载情况下,输出的电流是恒定的,不会隋负载的变化而变化,通常应用在大功率的LED上面在高档的小功率LED产品中也会用到LE

7、D恒流源电源。如果要想加长LED产品的寿命,LED电源的选择很重要,而恒流源电源是LED的最佳选择对像。通常情形下,很多的朋友拿到LED电源,不明白怎么样区分恒压源和恒流源。我在那个地址给大伙儿讲一个很有效的区分小技术(那个小技术平常只有咱们的学员才能学到的啊!)拿到一个LED电源,找到名牌参数。找到输出电压那个关键参数:若是它的电压标称是一个恒定值,那么是恒压源。若是是一个范围值,那么是恒流源。例如:有一个电源它的输出电压是12V,咱们那么确信那个是恒压源,若是它标称的是30-70V呢,那么那个电源必然是够恒流源。你是不是感觉那个方式很有效呢?5W通用输入恒压/恒流充电器电源的电路图在本设计

8、中,二极管D1到D4对AC输入进行整流。电容C1和C2对经整流的AC进行滤波。电感L1和L2和电容C1和C2组成一个n型滤波器,对差模传导EMI噪声进行衰减。这些与PowerIntegrations的变压器E-sheild?技术相结合,使本设计能以充沛的裕量轻松知足EN55022B级传导EMI要求,且无需Y电容。防火、可熔、绕线式电阻RF1提供严峻故障爱惜,并可限制启动期间产生的浪涌电流。图显示U1通过可选偏置电源实现供电,如此能够降低空载功耗并提高轻载时的效率。电容C4对U1提供去耦,其值决定电缆压降补偿的LmkSwitch-KLNKSISRi在恒压时期,输出电压通过开关操纵进行调剂,并通过

9、跳过开关周期得以维持。通过调整使能与禁止开关周期的比例,能够维持稳压。还可依照输出负载情形减低开关损耗,使转换器的效率在整个负载范围内取得优化。轻载(涓流充电)条件下,还会降低低级侧电流限流点以减小变压器磁通密度,进而降低音频噪音。随着负载电流的增大,电流限流点也将升高,跳过的周期也愈来愈少。当再也不跳过任何开关周期时(达到最大输出功率点),LinkSwitch-II内的操纵器将切换到恒流模式。需要进一步提高负载电流时,输出电压将会随之下降。输出电压的下降反映在FB引脚电压上。作为对FB引脚电压下降的响应,开关频率将下降,从而实现线性恒流输出。D五、R3、R4和C3组成RCD-R箝位电路,用于

10、限制漏感引发的漏极电压尖峰。电阻R4拥有相对较大的值,用于幸免漏感引发的漏极电压波形振荡,如此能够改善稳压和减少EMI的生成。二极管D7对次级进行整流,C7对其进行滤波。C6和R8能够一起限制D7上的瞬态电压尖峰,并降低传导及辐射EMI。电阻R9充当输出假负载,能够确保空载时的输出电压处于可同意的限制范围内。反馈电阻R5和R6设定恒流时期的最大工作频率(从而设定输出电流)与恒压时期的输出电压。简易电池自动恒流充电电路的总电路图简易电池自动恒流充电电路的总电路图如下图。它是由变压器整流电路、恒流产生电路、充电检测电路、显示电路和电源电路5部份组成。总电路图中需要注意的是各个单元电路之间的连接必然

11、要准确,同时各部份的布局要合理。高精度恒流电路图图所示为高精度恒流电路及应用实例。图(a)所示电路中,在恒流电路与负载之间增设接地回路,如此,负载转变时电流快速恢复稳固。A1和VT1组成电压/电流转换电路,可将地电平信号转换为后级恒流电路所需要的+15V电平,A二、VT二、VT3等组成标准的恒流电路,设定R1=R2而提供相等电流11=12。VT5的基极由稳压二极管VS1提供+5V的稳固电压,因此,VT5的发射极电压不受负载转变的阻碍而维持为+。另外,由于共基极电路的发射极输人阻抗低,因此A2与VT2组成的恒流源不受负载转变的阻碍,处于理想的工作状态。图(b)所示为高精度恒流电路的应用实例,它是

12、将这种恒流电路与开关电路组合成高精度脉冲发生电路。VD2和VD3组成电平移动电路,VD1和VD4是采纳肖特基二极管组成的开关电路。多个这种电路的组合可组成高精度D/A转换器。2kI.FJI2lkVDI*vrwltTHi说用厂5jqAVTiQ-iivA3大体恒流电路图大体恒流电路如以下图所示:0+RF!WjVS$r右一ipz改良型镜像恒流源电路图(1)减小B对Io阻碍的恒流源如图1所示为减小卩对几阻碍的恒流源。此电路的输出电流表示式为假设式中B1B2,此式与式(1124)相较,显然此处B的转变对I。的阻碍要小得多。(2)I。与Ir不同比例的恒流源如图2所示为I。与IR不同比例的恒流源。当VT1,

13、VT2中电流是同数量级时,其UBE能够为近似相等,故有(假设三极管的B足够大)即I。为(i-r27)调剂R1,R2的比值,可取得不同的几输出。1RB3+vt2图1减小B对Io阻碍的恒流源VTRR图2Io与Ir不同比例的恒流源镜像恒流源大体电路图如下图为镜像恒流源的大体电路,其中VT1,VT2是匹配对管。由图可知Ir=Ic2+IBl+IB2由于VT1,VT2是对称的,它们的集电极电流与基极电流别离相等,因此有当Ir确信后,该恒流源的输出电流Io也确信了。当B足够大时,IoIr,即输出电流近似等于参考电流,因此该电路常称为电流镜电路。电路简便的接近于零温漂的恒流源电路图电路简便的接近于零温漂的恒流

14、源电路如以下图所示:电压电流转换和恒流源电路图这几种电路都能够在负载电阻RL上取得恒流输出。第一种由于RL浮地,一样很少用。第二种RL是虚地,也不大利用。第三种尽管RL浮地,可是RL一端接正电源端,比较经常使用。第四种是正反馈平稳式,是由于负载RL接地而受到人们的喜爱。第五种和第四种原理相同,只是扩大了电流的输出能力,人们在利用中常常把电阻R2取的比负载RL大的多,而省略了跟从器运放。第五种是本人想的电路,也是对地负载。后边两种是恒流源电路。对照几种V/I电路,凡是没有三极管只类的单向器件,都能够实现交流恒流,加了三极管以后就只能做单向直流恒流了。第四和第五是成立在正负反馈平稳的基础上的,若是

15、由于电阻的误差而失去平稳会阻碍恒流输出特性,也确实是说,输出电流会随负载转变。而其他几种电阻的误差只会阻碍输出电流的值,而可不能阻碍输出特性。若是输出电流大,或嫌三极管的集电极电流和发射极电流不相等,能够把三极管换成。开关电源式高耐压恒流源电路图研制仪器需要一个能在0到3兆欧姆电阻上产生1MA电流的恒流源,用UC3845结合12V蓄电池设计了一个,变压器采纳彩色电视机高压包,其中L1用漆包线在原高压包磁心上绕24匝,L3借助原先高压包的一个线圈,L2借助高压包的高压部份。L3和LM393组成限压电路,限制输出电压太高,调剂R10能够调剂开路输出电压。恒流源电路图(带在线计算器)几种Vi转换和恒

16、流源电路图KLK4tzsTRL皿HlR3ITET数控恒流源电路图几种VI转换和恒流源电路图的比较电路图ELLElRtR1El=-R2无源可调恒流电子负载电路图在电源行业,电子负载是所有厂家都必需的研发或生产设备,市场上的电子负载大多都较贵而且都是需要电源供电才能工作。本文提供一种电路方案,使读者能够自制无源可调CC模式的电子负载,其输入电压范围可达到330V,输入电流范围可达到10A。电路如以下图所示:图中的S1为负载开关,断开S1即可断开整个负载。图中的NIB为准恒流源电路,使432产生基准,使输入电压转变时,432上的电流大体维持不变。作为CC模式时,R8为电流取样电阻,进行电流反馈,使负

17、载电流恒定R6电阻为粗调,R7电阻为细调。MIC2951组成的低漂移恒流源电路图如下图电路是采纳MIC2951组成的低漂移恒流源电路,其恒流源的输出电流值为:IL=R,为了使MIC2951的输出电流不得超出150mA,R的精度要求为1%。UU111killSNSFBSHDNTAPGND/ERRW723组成的开关式恒流源应用电路图1fi3k他4I3k3ADJ02mH二3二ga3NMW723丄4-,n二二口如下图是用W723多端可调式正集成稳压器组成的固定电流开关稳压器应用电路,输出电流1A。图示电路中,W723的参考基准电压(约通过R、R2分压使大约3V的电压加至同相输入端,同时还通过电阻R3、

18、R4分压后加至反相输入端,R4的低端又和分流电阻R5相连。当反相和同相输入端近似平稳时,分流电阻R5上的压降为IV左右。R6用于调剂输出纹波电流的。当电路的反馈电流增加时,稳压单元的输出级导通,W723的Uin端有12mA的电流脉冲,驱动晶体三极管VT。稳压二极管VD1用来偏置稳压单元的输出级,而二极管VD2是用来排除反向尖脉冲的。电容C1和电感L组成滤波器,以便滑腻开关输出波形。电路的最高工作频率取决于负载的大小,一样为20kHz。CW137CW237CW337组成的可调恒流源电路图CW137CW237CW337组成的恒流源电路图23全球墨主www,丰RCW137/CW237/CW3374=

19、1.25olg/?|W120。2XSCF5CW117/CW217/CW317组成的恒压/恒流电源的原理电路图电流调节CW117/CW217/CW317组成的输出电流从零调起的恒流源电路图1J680*75pI氏3011.25-30V05ACW117CW217CW317组成的标准恒流源电路图0三端可调输出电压集成稳压器的基准电压较低,维持输出电压稳固的能力很强。另外,调整端电流超级小,仅有50UA左右,而且又极为稳固,只有UA的转变。因此,能够用它组装成电流恒定且效率较高的恒流源电路。如图为一个标准的恒流源电路。输出电流为:Io=Id+Rl。由于Id较小,可近似以为Io=Rl。CW7805组成的输

20、出电流可调的恒流源电路图高精度恒压恒流直流稳压电源电路图心2V01空gV1001rikmig1伽1S斜u伽?LUMI10k4A和-*o帥址JW有外接扩流管爱惜的大电流集成稳压电源电路-u2VT.5.63DG43CW7900c,rb,*SP=gVT2sCP3AD30CZ0M保护电流值8档位恒流电流设计电路图用蒂密电阻TU3L|WE5VSEJ.卅KlE=a.2EES=O.125JCRiM.OISEEM.0I5K2=0.113151F;=q;ijg呂i:10分别对应輛出电ME:1.25nAL*点1.TitiA2nA用电孑开关切换档位二扱営用F.审请电匡CW200组成的可调恒流源电路图由MIC5158

21、组成的恒流源电路C2+C1+C2-Cl-VcpVddGNDHAGD5VSEAEN采纳运算放大器TAA861的恒流源该屯路技术数据;该电路输岀电流由下式决定:丄A式中爲为稳用管产生的基准电用屮为功啟管BD136的放大系数若;3足够大侧有输出电流儿-100mAIB.5最大输出电淤伏一&5n):/750mA电流调樂率(AC=l,t15VgWDmA时hF-ZXlO负载调整率(Ua=01DV,;7e=15VUA=lC0mA时】=警=1,心尸输出电流掘度系数.a5XlUV/K-具有宽调剂范围的恒流源谏稳谎电路顶載电阻I的壬降月作恒流源互补晶怵管的基极傭压,如果通过-卞线性电位器使NPN腎的负载电IH科F1

22、NP管的射极前阻反方向改变,则船体骨T2的集电极电瀟冋KPN善集社极麻阻与FNP管射极电阻之比成土例。如令磋晶w-射极何电压为。即,.则端出电施盂w醸一o.ev/a碍+尺其值随电位器触点位置不同而用同:勺在初始位置时(倍中八约为0.UmA,在中|可位置肘次2.加儿花终端位省时琥7为24.5uiA,遠.样总变化擅为24-5mA/0.lmA=163u由TL431组成的高精度的恒流源JBG1901由TL431组成的高一精度的恒流源,精度和温度時性都很好。V-CCTDL:;N4148UA431jK专用于LED灯的恒流二极管型号:F-153封装:SMD耐压:28V电流范围:开启电压:电流操纵精度:小于等

23、于百分之一型号:E-153封装:DIP耐压:25V电流范围:开启电压:电流操纵精度:小于等于百分之一型号:L-1822电流范围:开启电压:耐压:27V型号:L-2227电流范围:开启电压:耐压:27V型号:L-2733电流范围:开启电压:耐压:27VFtypeEtypeAnodeflBasiccharacteristicsIPH.inasE|FJoled用13-2222-2727QJ克IFjOmABLEDffi27-33iOO印加電庄力変動一定電流壬供給結線例jnjh口口口Tnrrr外形図mm8詔ei-CRD!_-才7電诜最高使用電圧VmaK.CV許容駆力Pmax.mWOmAtDLED#險奇甫

24、丄IpmA扃特性(0鈿時)联系方式:深圳市同创利电子回路C点灯rLFOCD数奄源DCLEDiDVF:35V(白青色玄也l.EDVf:2,0V(色9V土丄q1個ED1便点灯七巻、電倔力弋盼亠詁诃二凳勤匚弋毛环疑我崔L求7TtdUlH2個古左LED2個点灯的七色、重源郃EVg5W二窓帥繹度安定L丰丁12V+J1仃卩2個丰CLF:D2便点灯七乱電循审1沖甜W二壺動LT右肾II安:未书i用厲4個环LED4個点灯七色.竜源力1变勒匚疋屯輝囲褻込LD旧周点灯上吉霍遁力弋22V-4SVr.藍題1屯譯度安对-母寸r广rrer*cr心:iiMmrwl0個打LEDWfE廉灯七比鑑浦邙24V5W|二変勒1匸右輝度妄

25、走L.古审*CRDUVh,LEM向含【二:T注JK苹占I*电话:6/2856/2896联系人:周红耀网址地址:深圳市宝安中心区宝源路宝源大厦九楼916室类型1:特点:利用运放,高精度输出电流:Iout=Vref/Rs特点:利用并联稳压器,简单且高精度输出电流:Iout=Vref/Rs类型3:特点:利用晶体管,简单,低精度输出电流:Iout=Vbe/Rs检测电压:约类型3jlout类型4:特点:减少类型3的Vbe的温度转变,低、中等精度,低电压检测输出电流:Iout=Vref/Rs检测电压:约类型5:特点:利用JEFT,超低噪声输出电流:由JEFT决定检测电压:与JEFT有关其中类型1为大体电路

26、,工作时,输入电压Vref与输出电流成比例的检测电压Vs(Vs二RsXIout)相等,如图5所示,类型5IoutGND+3.3VLucent_l2C_cEkLucertt_:2.C_CIock_AWConstan!CurrentPull-UpCircuitFMMT39G6JQ614/FMMT39063J12275nnnSD42522恒流芯片1I-.A705恒流芯片XL6003恒流芯片:畑::mnAI.朋1(12ESXL40041恒流芯片u灵1蚀)D2OOUT势爭IDOaFOTcharP-0.155/RcsjXKI001丄LGNIOHFfOTClSR1学AClHSBEiV离线式1-3W/250m

27、Afi流原理閤LED专用宽电压线性恒流驱动器(恒流三极管)恒流三极管为LED电路提供恒定电流的器件,使电路具有简单、经济、可靠等特点LED三极管在一定电压范围内恒定电流带有负温度系数,在极端的电压和工作温度下保护LED免受热失控影响.线性恒流三极管为在宽电压内恒定电流效果最佳的产品,体积小,封装有T0-92(普通直插的三极管)、SOT-89-3、SOT-223三种,恒流三极管只需要保证输入电压减去LED串总电压的数值不超过90V(输入-输出的最大电压)即可,可完全替代复杂且烦琐的恒流源电路,非常适合用于体积小的LED灯具产品具有成本低廉、结构简单、寿命可靠等特点LED恒流器不需外加元件,可直接

28、应用于120/220Vac交流供电回路中,120/220Vac交流市电输入经过桥式整流后,只需要保证输入电压减去LED串总电压后所剩下的电压不超过恒流三极管输入-输出90V即可.名称型号封装恒定电流电压LEODM代电路方案产品规格:AC9h-2WVTLED:3串联,LED电3fi(hnAtL1=350mA,LED:3联)功率因数91,2%电路元件取值:Rl=80K左右的金属膜电阻Q=任何耐压超过350V的NPN三极管,比如1300系列、3DD15D(好象大才小用了啊,呵呵)等d=稳压二极管C2=10V、100uF以上的电容(比如电解电容)R2=80R左右的电阻.R2这个阻值可根据公式算出来:需

29、要的电流=阻值,这里取大约15mA的电流,当然可根据三极管的电流自行设定,比如如果用DD15D,那么电流就可达到500mA以上.至于前级的市电整流虑波电路,原理简单,不再赘述.不要看电路简单,却是一个十分稳定的电路,比那些IC呀驱动呀稳定得多,电路画好,不需要调试,一次成功.现在公布一下电路的参数,然后提醒大家注意的思考:效率:电压在200V-260V之间变化时,效率在98%-77%变化,在220V时效率是90%(当然还可以做的更高点,只是要朋友们思考啦)在240V时效率是83%,几乎可以同一个AC/DC芯片相媲美.除了效率外,别的参数一切都远远优于开关电源(包括AC/DC)啦,由于没有振荡,

30、不存在功率因数的问题真正是“低谐波含量、高功率因数、无污染(电磁)”R1的计算公式是很有松紧度的,你能够取“电源电压*根号*串联二极管的数量/13mA=R1”就好了,1-3mA是视你的稳压二极管的性能取值那个电路是利用R2做三极管的电流反馈,稳压管做电压基准的恒流电路,若是对恒流精度要求不高能够利用,优势是本钱低,电路简单,缺点是输入电压波动太大,恒流值会有波动,而且电路效率完全取决于串联LED数量丄ED数量少,效率低丄ED数量多效率就高,另外不同型号的三极管,其Vbe电压不是一个固定值,即便是相同型号,也有必然的个体不同,若是量产,恒流一致性会有些折扣,而且220V电路若是追求高效率丄ED是

31、N颗串联,若是有一颗LED损坏,其他LED也会不亮,需要外加旁路.PS:这里的电路,三极管没必要选耐压350V以上的管子,因为底下还有88颗LED,可以帮助Q1分担150-180V的电压(前提LED的防静电处理要做好),所以选个200V-250V的就可以了.可以选择的三极管性能、价格会好很多.C2的作用:加电进程中电压缓升,从而输出电流缓升.类似于开关电源的软启动第一确信:正弦交流电供电时,负载的阻抗含有电抗(容抗和感抗)成份时,那么会在外界正弦波电形成能量的存储,一样以为容性为Ec=,在正弦电压下降的时候,这部份能量返回电网,形成无用功,这是对电网有害的,加重了电网的负担而且把电能消耗在了传

32、输电路上.而有效功与无用功之比,确实是功率因数.在这个电路中,外界正弦电压上升期内,如果电压值低于滤波电容C1的电压,则整流桥堆反向截止,形成了只有输入电压、没有输入电流的现象,这时等量于电流滞后于输入电压.当电压慢慢上升超过了C1上的电压时,二极管正向导通,形成大脉冲电流然后输入电压达到峰值后再慢慢下降,低于C1电压时,二极管又截止.这时又形成了那种电压、电流值不同步的现象,这是一个周期.这个过程中,正弦电压、电流不按照阻性变化,也不按感性变化.如果这时用普通的功率因数仪器测量,因为普通功率因数测试仪是比较的电压与电流的相位差,所以将得到一个毫无价值的数据:仅达到左右.如果我们用测量有用功和

33、无用功来分析这个电路,会惊异的发现:输入端的视在功率的值基本等于变换器自身的热损耗功和输出功之和,就是说,测量结果说明这个电路的视在功率和有功功率相等,功率因数是1!为什么会出现相反的结果呢?.原因是:第一个用仪器测量的本身忽视了一个重要的地方,正弦电压下降时,二极管反向截止,C1不能向电网输出电流,而只能对后级做有用功率!所以,很多仪器,根本不适合测量这种电路.可用多功能功率因数测试仪测量,调到“无感抗电路”,再测试,功率因数为97%,OK.(上海好多家仪器厂都有生产这种仪器).最后值得一提的是:这电路本身对电网的危害并不是功率因数低,而是在峰值时形成大电流脉冲(有人称为谐波),对电网有害,

34、但一定要区别于功率因数.这几天以来,感谢大家的关注,但本电路真正的优点与缺点几乎一无人注意,今天我指出了缺点,那么优点再请大家注意一下啦,呵呵.由于在这里不方便发长篇的、详细的分析,只能大致的给大家讲一下,有什么不明白的地方、或者我说错的地方,请帮我指出.顺便再提醒一下“XUrub。”,按拼音应该称你为“徐工”吧?你说的不错,PF值与滤波后的电解有关系,但在这个电路中,不是你说的“有很大关系”那么严重,而是在超过1uF时,再加大电容后几乎对功率因数影响不大,希望你以后注意区别.C2的真正作用是解决LED的一致性不行而加上的,那个电路的功率因数应该在以上,属高功率因数危害是峰值谐波其实即便把C1

35、去掉,它的缺点几乎没转变,因为LED必需要在以上发光的,因此必然会形成峰值谐波的,但这种危害在别的电路上一样存在,是一种通病,不是那个电路特有的,只是此刻很多工程师只注意功率因数,很少注意峰值的危害算了.C2是解你的358供电是多少v?由于不是轨至轨运放,需要那个供电电压在12V以上比较好.这个图原理上是正确的,有几点改进意见,如果觉得不合适,就当开玩笑了,呵呵.1,需要在358的1和2脚上加入一个103-104的电容,以避免在恒流周围震荡,改善交流特性.为了将系统作稳定,最好是在的取样电阻上用RC电路加入到358的2脚.M0S的并联错误,将R17去掉,短路,保证每个栅极上串入10R电阻即可.

36、若是流入10多A的电流,的采样电阻上消耗10W以上的功率,那个热稳固性能保证吗?此刻的问题是:若是不在每一个M0S管的S极接电阻欧),而只是在每一个M0S的G极接10欧的电阻,那么M0S会发烧不平稳,你不要把电阻接到S,你能够将接到电源到D上就能够够了比较正确,查看电脑中存入的电路图,10年前我在二极管测温仪中已接触应用,那么是用的是PNP三极管作恒流输出,成效专门好.但无法排除电流的温度漂移.运放跟从器和三极管射板跟从器持性是相同的,对弱讯号输入电位和输出电压之间有一个专门大阻抗的隔离作用,但电压能够跟从输出.运放跟从器典型接法将负输入端与输出直接连接,送出的电压值等于正输入端电位值,当正输

37、入端电位值变更时,运放输出也跟从变更,并有数mA的较大驱动能力假设再接一只三极管/MOS管,那么驱动电流更大.由于运放跟从器输出电压等同于正输入端电压,通过对定压下的源极电阻改变,就可实现Is=V/R的恒流调剂.而栅极电阻亦可省去,加与不加一个样.改变恒流大小也可直接改变运放正输入端基准电压,从而转变源极电阻上压降来改变Is电流.实际的利用电路是在源极电阻端并联了比较大的电容,输出电流最少3A,从你的图看,输出电流必然通过源极电阻和MOS管,除非你的图没画全.源极电阻并联电容只在通电初始时起作用,这时会有很大电流,而且不恒流.当电容充足电后就失去作用.当然也不能说完全失去作用,在负载电流突变时

38、电源就不恒流了,也就是在需要时可以输出个短暂的大电流.并上电容这个电路就不是恒流源了.mos管的源极对地间是稳压,漏极对电源端是恒流.源极电阻小了稳压精度固然就会不行,因为电阻小了电流转变时电压转变就小,反馈到输入端的阻碍就小.恒流源只能恒定最大电流,确实是输出电流能够小于恒流值,可不能大于恒流值.负载电阻太大,电流小于恒流源的恒定电流时就可不能起恒流作用,这时电流由负载决定.運放是工作在開環放大狀態下的既不是跟隨也不是比較器運放輸出的電阻是衰減干擾用的但是是這樣做還是不夠,需要在MOS的GS之間并聯一只電容,運放輸出和MOS的G之間最好在串聯一個小電感.原因是,運放的開環增益太大了.在MOS

39、的S與地之間接的電流取樣電阻實際上是和MOS作為跟隨器方式工作的.MOS本身就具有不錯的恒流特性,但是漂移比較大.取樣電阻上并聯的電容是為了旁路高頻信號的.這樣能夠降低系統的高頻增益,以提高穩定性.并聯電容依然還是恒流電路的.由于取樣電阻通常比較小,所以并聯的電容通常比較大-所以比較少見而已.系統有三處增益運放的開環增益AoMOS管的跨到g取樣電阻的電阻R這是一個典型的負反饋系統.總直流增益At=Ao*g/R-這個增益是對于誤差來說的.對外反應就是輸出跟蹤給定的能力.這個增益越大,誤差越小,但是過大會不穩定.但是對負反饋系統來說,交流增益更有用一些,也更難于設計.如果用圖上的原理,則交流增益和

40、直流增益是一樣的.但是實際的情況是一運放本身的放大倍數Ao隨著頻率的增加而顯著減小.M0S管的柵極等效電容也同柵極電阻形成RC濾波而進一步衰減交流增益若能夠在S極取樣電阻上并聯較大的電容,也能夠衰減交流增益.為什么要衰減交流增益呢?因為這個電路的工作頻率不高,通常是用做直流恒流源,輸入電源也一般有穩壓的,所以,只需要系統有足夠高的直流增益以消除直流誤差即可即便是用工頻整流后的DC做電源,也不過100Hz的頻率.而系統本身的增益范圍可能是數兆范圍的,所以一定要衰減下來,在不需要的頻率上,放大系數要小過1-0dB加了那么多的東西以后,直流工作點幾乎沒變化,但是交流增益卻下降很多.這樣會有什么影響呢

41、?1、調整時間會從幾百納秒變為幾個毫秒-因為是直流恒流源,所以調整時間長這么一點點是沒所謂的.2、消除了高頻紋波-這個很關鍵,這幾次的全國電子設計競賽中有關恒流源的題目大都需要考慮這個問題.很多同學都知道并聯大電容會降低紋波,但是原理卻不清楚.电阻选R=12V/350mA=34Q左右,要求准确需要电位器调整这种电路会出专门大的问题,mos管不在完全导通模式,发烧量专门大什么缘故实验不成功?如把4K电阻变成2K能产生2A恒流源,已经实验成功基准不要用7805,改用TL431.MJ11016的射极电阻功耗5A时25W,发烧大,温升高,电阻温飘大,恒流成效差,可减小其阻值,降低其功耗.MJ11016

42、的耗散功率专门大,易损坏,在MJ11016的集电极串个大瓦数的电阻,分担耗散功率,可减小MJ11016的散热器,电阻的靠得住性比器件好,许诺温升高.用MOSFET只要把RSG改大到10K-20K就能够够了,358供电最好用15-18V.放电的蓄电池组为36V或48V,这个电路也可以,只要主功率管耐压够.如果要以更大的恒流放电,没有必要3路并,只要改变取样电阻的阻值,当然管子的容量也要加大.精度的问题,取决于基准,运放,取样电阻以及与基准和取样电阻有关的分压电阻.具体说,恒流精度要高,要用低温飘的基准,低温飘的精密电阻,以及精密运放(如0P-07).若是把12V的放电电池改成24V,刚开始电流稳

43、固在5A.可不到1分钟,电流就一直上升.但把24V蓄电池改成12V,一切正常.缘故?RSG是偷懒的写法,确实是MOSFET源极和栅极之间的电阻,在你的图上确实是发射极和基极间的电阻.关于电流不稳的问题,你要查7805输出是不是稳固,运放和7805要单独供电.发射极不能接别的电阻,只能接取样电阻.LED专用宽电压线性恒流驱动器(恒流三极管)恒流三极管为LED电路提供恒定电流的器件,使电路具有简单、经济、可靠等特点LED三极管在一定电压范围内恒定电流带有负温度系数,在极端的电压和工作温度下保护LED免受热失控影响.线性恒流三极管为在宽电压内恒定电流效果最佳的产品,体积小,封装有T0-92(普通直插

44、的三极管)、SOT-89-3、SOT-223三种,恒流三极管只需要保证输入电压减去LED串总电压的数值不超过90V(输入-输出的最大电压)即可,可完全替代复杂且烦琐的恒流源电路,非常适合用于体积小的LED灯具产品具有成本低廉、结构简单、寿命可靠等特点LED恒流器不需外加元件,可直接应用于120/220Vac交流供电回路中,120/220Vac交流市电输入经过桥式整流后,只需要保证输入电压减去LED串总电压后所剩下的电压不超过恒流三极官输入-输出90V即可.名称型号封装恒定电流AC220VAC110VCRTCL1920TO-92,SOT-223电压串接LED数量DIF13I1UUY軾U;al訂沁个LED订爰1920WLK口立QpF,S0T-89-31020Ma(可调)90V约98个约45个深圳市佳联电子Tel:86-,Fax:86-SU100TH|i宀33eilJ5JV*73J?RL0EOUT:5-8LED680MA最后一个431稳出来一个基准,分压后和电流取样的信号叠加给中间的一个431,中间的431完成误差放大(一样的电流取样可不能到,因此加上一个稳固的电压),第一个431做输出电压钳位到.第3个431做基准用的,大致需要3mA电流和luF电容.调节电流要调电流取样电阻和第2个431上的分压电阻.第1个431直在工作,不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论