交通工程 道路通行能力 第二章 双车道公路通行能力课件_第1页
交通工程 道路通行能力 第二章 双车道公路通行能力课件_第2页
交通工程 道路通行能力 第二章 双车道公路通行能力课件_第3页
交通工程 道路通行能力 第二章 双车道公路通行能力课件_第4页
交通工程 道路通行能力 第二章 双车道公路通行能力课件_第5页
已阅读5页,还剩104页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、道路交通流理论1交通工程学交通流理论数学 物理学力学 规划设计营运管理各种交通现象交通规律形成机理作为交通工程学理论基础的交通流理论是运用物理学和数学的方法来描述交通特性的一门边缘科学,它用分析的方法阐述交通现象及其机理,使我们能更好地理解交通现象及其本质,并使城市道路与公路的规划设计和营运管理发挥最大的功效。概述20世纪30年代才开始发展,最早采用的是概率论方法。1933年,金蔡(Kinzer.J.P)论述了泊松分布应用于交通分析的可能性;1936年,亚当斯(Adams.W.F)发表了数值例题;格林希尔茨(Greenshields)发表了用概率论和数理统计的方法建立的数学模型,用以描述交通流

2、量和速度的关系。40年代,由于二战的影响,交通流理论的发展不多。50年代,随着汽车工业和交通运输业的迅速发展,交通量、交通事故和交通阻塞的骤增, 交通流中车辆的独立性越来越小,采用的概率论方法越来越难以适应,迫使理论研究者寻求新的模型,于是相继出现了跟驰(Car Following)理论、交通波(Traffic Wave Theory)理论(流体动力学模拟)和车辆排队理论(Queuing Theory)。这一时期的代表人物有Wardrop、Reuschel、Pipes、Lighthill、Whitham、Newel、Webster、Edie、Foote、Herman、Chandler等。交通流

3、理论的发展历程1959年12月,交通工程学应用数学方面学者100多人在底特律举行首届交通流理论国际研讨会,并确定每三年召开一次。从此,交通流理论的研究进入了一个迅速发展的时期。1975年丹尼尔(Daniel I.G)和马休(marthow,J.H)汇集了各方面的研究成果,出版了交通流理论一书,较全面、系统地阐述了交通流理论的内容及其发展。1990年美国Adolf DMay出版了Traffic Flow Fundamentals1996年,美国联邦公路局(The Federal Highway Administration,FHWA)出版了Monograph on Traffic Flow Th

4、eory。主编Nathan HGartner,Carroll Messer,Ajay KRathi等。涉及的内容包括:交通流特性、人的因素、车辆跟驰模型、连续流模型、宏观交通流模型、交通影响模型、无信号交叉口理论、信号交叉口交通流理论、交通模拟和交通分配。交通流理论的发展历程研究背景 交通工程学刚刚诞生,需要建立交通工程学的基本理论体系,探索道路交通的基本规律代表性人物 格林希尔茨(Bruce D. Greenshields)研究手段 大量现场调查与观测 利用概率论与数理统计,建立模型代表性成果 交通流与速度的关系模型快速发展阶段第二次世界大战结束20世纪50年代末汽车数量猛增交通规划道路建设

5、加快交通控制战后经济恢复期(50年代),为了解决就业问题,通过道路建设带动汽车.建材. 钢铁. 石油. 玻璃等行业的发展稳定发展阶段20世纪50年代末交通拥挤交通问题交通事故交通污染代表性成果交通产生理论交通需求分析交通流特征交通供给理论交通平衡理论路网交通流调度(分配)交通模拟理论计算机模拟再现、辅助决策研究背景 汽车普及,交通问题日趋严重,希望缓解城市交通拥 挤问题代表性人物 梅(May)、赫尔曼(Herman)纽威尔(Newell)等研究手段 调查与观测 网络理论、人工智能理论(神经网络、元胞自动机)、计算机仿真(管理学、物理学、数学)道路通行能力背景定义交通流理论:研究在一定环境下交通

6、流随时间和空间变化规律的模型和方法体系。Traffic flow theory: The description of traffic behavior by application of the laws of physics and mathematics. 空间时间点(段)路段路网短时间微观中观宏观较长时间中观中观宏观长时间宏观宏观宏观研究内容交通流模型( Traffic Flow Model ):(驾驶)人员的因素模型(Human Factors)车辆跟驰模型(Car Following)连续流模型(Continuous Flow)无信号控制交叉口模型(Unsignalized Int

7、ersection)信号控制交叉口模型(Signalized Intersection)宏观交通流模型(Macroscopic Flow)交通影响模型(Traffic Impact)道路通行能力(Highway Capacity)研究内容交通流特性( Traffic Flow Characteristics )指交通流运行状态的定性和定量特征。交通流参数 (用来描述和反映交通流特性的物理量)车头时距( Time Headway )流量(Traffic Flow Rate、Traffic Volume)速度( Speed )密度(Density)车头间距( Distance Headway )车

8、道占有率(Occupancy)交通流参数1、车头时距(Time Headway)V2V1tTime headway2、交通量(Volume、 Flow Rate )单位时间内,通过道路(或某一条车道)某一地点、某一断面的交通实体数。 Number of vehicles passing line A-A in an unit of time. AA交通流参数 1) 时间平均车速(TMS)单位时间内各车辆经过某断面的地点速度的算术平均值2) 空间平均车速(SMS)在某瞬间,某区间内的全部车辆的车速分布平均值。当观测长度为一定时,其数值为地点车速观测值的调和平均值.TMSAAVi (i=1,2,

9、N)Average Travel Time:SMS = V1 BBAAVi VN d .3、速度(Speed)地点车速车辆通过道路某一点时的速度X位置,t时刻在某一特定时刻,行驶于道路某一特定路段内全部车辆的地点车速分布平均值。N观测的车辆数t很短的时间间隔sit时间内车辆行驶的距离区间平均速度是地点速度的调和中项;区间平均速度小于时间平均速度。 分别为区间平均速度和时间平均速度的方差;区间平均速度与时间平均速度为一定条件下的线性关系。3) TMS与SMS间的关系速度21例: 设有3辆汽车,分别以20、40、60km/h的速度通过长度为10km的路段,试求时间平均车速和空间平均车速。 解:先求

10、时间平均车速: 再求空间平均车速速度自由流(车速差别不大)下,两种平均车速相差不大车速变化很大时,两种平均车速的差别很大非拥挤路段拥挤路段或信号交叉口前区分TMS与SMS的意义速度4、交通密度( Traffic Density )某瞬间单位长度内一条车道上的车辆数,表示在一条车道上车辆的密集程度,常以K 表示,veh/km定义对于具有不同车道数的道路,为使车流密度具有可比性,车流密度应按单车道定义,单位:辆km车道。密度是交通流中重要的参数,因为它直接反映了交通需求量。交通密度也可用车头间距来表示密度是瞬间值、是平均值,随着观测的时刻、路段长度而变化。密度还可以近似地用来衡量驾驶员操纵车辆的舒

11、适性和灵活性。密度的应用:管制、事故探测、服务水平交通流参数5、车道占有率( Occupancy )1. 空间占有率在道路的一定路段上,车辆总长度与路段总长度之比, %车流密度只能表示车流的密集程度,而空间占有率则能反映某路段上车队的长度。2. 时间占有率在道路的任一路段上,车辆通过时间的累计值与观测总时间的比值,以%表示。交通流参数26待续3-2 交通流参数调查方法四类方法:定点调查小距离调查沿路段长度调查浮动车调查(4)调查数据计算 测定方向上的交通量qc: Xa:测试车逆测定方向行驶时,测试车对向来车数; Yc:测试车在待测定方向行驶时,超越测试车的车辆数减去被测试车超越的车辆数。平均行

12、程时间平均车速浮动车法 在设计新的交通设施或管理方案时,需要预测某些具体的交通特征参数,并且希望用现有的或假设的有限数据作出预测。设计左转专用道时,需预测一个信号周期内到达车辆超过4辆的次数(车辆到达分布:离散型);设计人行横道交通管制系统,需预测主路车头时距分布 (车头时距分布:连续型);等等。 统计分布可以帮助技术人员得到确切的预测结果。3-3交通流参数的统计分布车辆的到达在某种程度上具有随机性,基于概率论,描述这种随机性的统计规律有两种方法。离散型分布(计数分布):考察在一段固定长度的时间(空间)内到达某场所的交通数量的波动性;连续型分布:研究上述事件发生的时间间隔的统计特性。如车头时距

13、、可穿越空档的概率分布。引言一. 离散型分布通常情况下,在一定时间间隔内到达的车辆数(或一定长度路段上分布的车辆数)是随机的,用离散型分布描述。自由交通流、拥挤交通流、波动交通流泊松分布二项分布负二项分布 P(k)在计数间隔t内到达k辆车或人的概率; 单位时间内的平均到达率(辆/s或人/s); t每个计数间隔持续的时间(s)或距离(m); e自然对数的底,取值为2.71828; 均值M与方差D均为t;即 M=D=t适用条件:交通量不大,自由交通流,车辆随机到达1. 泊松(Poisson)分布 流的平稳性 对于任意的t0及t0,在时间区间(t,t+t)内有n个顾客到达的概率只与t有关,与时间区间

14、的起点t无关。 当t充分小时,在(t,t+t)内有一个顾客到达的概率与t成正比,即 其中,O(t)是当t 0时,关于t高阶无穷小; 为单位时间内的顾客到达平均数。1. 泊松(Poisson)分布 泊松流(最简单流)-形成条件在时间轴上,互不相交的时间区段 和 内,顾客的到达数是相互独立的,即前一顾客的到达不影响后一顾客的到达。流的无后效性当t 充分小时,在 t 时间内到达一个顾客的概率为 t +o(t ),到达两个或两个以上顾客的概率为 o(t );即两个顾客不可能同时到达流的普遍性泊松流(最简单流)-形成条件设把长为t的时间区间分成m等分,每段长度为 。若在dt内,有一个顾客到达,则称被“占

15、着”,如果在dt内,没有顾客到达,则称为“空着”。被“占着”的概率近似为被“空着”的概率近似根据流的无后效性,在m个dt中,有顾客到达与没有顾客到达可以看成是m次独立的试验 在长为t 的时间区间内,到达n个顾客的概率泊松分布详解在长为 t 的时间区间内,到达n个顾客的概率在m个dt中,有n个dt被顾客“占着”的概率 利用二项定律 泊松分布详解dt0,m 泊松分布详解 到达数小于 k 辆车(人)的概率(m=t): 到达数小于等于 k 的概率: 到达数大于 k 的概率: 到达数大于等于 k 的概率:泊松分布公式 到达数至少是x但不超过y的概率: 用泊松分布拟合观测数据时,参数 m 按下式计算:式中

16、:g观测数据分组数; fj计算间隔t内到达kj辆车(人)这一事件发生的次(频)数; kj计数间隔t内的到达数或各组的中值; N观测的总计间隔数。1. 泊松(Poisson)分布 递推公式 应用条件 当观测数据的方差与均值S2/m的比值接近于(大约等于)1时,泊松分布表示合适;明显地不等于1时,泊松分布表示不合适。1. 泊松(Poisson)分布 例题-1例题 某信号交叉口周期C=97s,有效绿灯时间g=44s,在有效绿灯时间内排队的车流以s=900辆/h的流量通过交叉口,在有效绿灯时间外到达的车辆要停车排队。设信号灯交叉口上游车辆的到达率q=369辆/h,且服从泊松分布,求: 使到达车辆不至于

17、两次排队的周期能占的最大百分率。例题-2 解: 一个周期内能通过的最大车辆数AgS90044/360011辆,当某周期到达的车辆数N11辆时,则最后到达的(N-11)辆车就不能在本周期内通过而发生二次排队。 在泊松分布中,一个周期内平均到达的车辆数m=t36997/36009.9辆。 则可能到达车辆数大于11辆的周期出现的概率为 即到达车辆不致两次排队的周期数最多占71。例题 P(k)计数间隔t内到达k辆车或k个人的概率; 平均到达率(辆/s或人/s); t 每个计数间隔持续的时间(s)或距离(m); n正整数;适用条件:交通量大,拥挤交通流,自由行驶机会不多2. 二项(Binomial)分布

18、 贝努里(Bernoulli)概型:1)每次试验条件都一样,每次出现结果只有两个: S、F,S出现的概率为p;2)每次试验的结果不互相影响,或者称为相互独立;3)进行固定的n次试验,结果S出现次数的概率; 对于贝努里概型,结果S在n次试验中出现 k次的概率 车流拥挤,自由流成份少,拥挤流等间距行驶,如果划分n 组,每组作为一个“车辆事件”其概率为 “车辆事件”构成贝努里概型,得出到达车辆数概率1)二项分布公式估计拥挤流合理性分析车辆数观测频率理论拟合频率二项分布泊松分布 1200.42.7合计6464.064.0m=7.469 S23.999 S2/m=0.53用5%置信水平按2检验时,接受二

19、项分布拟合,拒绝泊松分布拟合1)二项分布公式估计拥挤流合理性分析通常记p=t/n,则二项分布可写成:式中:0p1,n、p称为分布参数。 均值M=np,方差D=np(1-p),MD。当用二项分布拟合观测数时,根据参数p、n与方差,均值的关系式,用样本的均值m、方差S2代替M、D,p、n可按下列关系式估算:1)二项分布公式估计拥挤流合理性分析2)递推公式 3)应用条件 车流拥挤,观测统计方差与平均值S2/m小于1时,交通流的车辆到达分布用二项分布拟合较好。2. 二项(Binomial)分布 据统计某交叉口有25%的行人违章,交警随机拦住5人,问其中2人违章的概率是多少? 例题-2 解: 行人违章的

20、概率p=0.25,交警随机拦住5人n=5,则其中2人违章的概率为: p、为负二项布参数。0p1,为正整数。3. 负二项(Negative Binomial)分布适用条件交通流波动性大或以一定的计算间隔观测到达的车辆数(人数)其间隔长度一直延续到高峰期间与非高峰期间两个时段时,所得数据可能具有较大的方差。逆贝努里(Bernoulli)概型:1)每次试验条件都一样,每次出现结果只有两个:S、F,S出现的概率为p2) 每次试验的结果不互相影响,或者称为相互独立;3)保证出现次结果S,进行随机试验(不确定)k 次的概率; 对于如上概型,出现结果次,进行k次试验的概率 车流波动,拥挤流随机,拥挤流等间距

21、行驶,类似拥挤流处理方法,将事件S作为一个“车辆事件”处理 “车辆事件”构成逆贝努里概型,得出到达车辆数概率1) 负二项分布公式估计波动流合理性分析车辆数观测频率理论拟合频率泊松分布负二项分布0139129.6140.41128132.4122.025567.762.232523.124.24105.98.0531.22.3500.10.9合计360360.0360.0m=1.022 S21.203 S2/m=1.177用5%置信水平按2检验时,接受负二项分布拟合,拒绝泊松分布拟合1) 负二项分布公式估计波动流合理性分析 由概率论可知: 均值M=(-p)/p,方差D=(1-p)/p2, MD。

22、 当用负二项分布拟合观测数据时,利用p、与均值、方差的关系式,用样本的均值m、方差S2代替M、D,p、可由下列关系式估算:3. 负二项(Negative Binomial)分布3)应用条件 车流波动性大,观测统计方差与平均值比S2/m大于1时,交通流的车辆到达分布用负二项分布拟合较好。2)递推公式 3. 负二项(Negative Binomial)分布小结车辆到达离散分布小结车流自由行驶,当观测统计的方差与均值的比值S2/m大约等于1时,车辆到达泊松分布拟合效果好;车流拥挤,观测统计方差与平均值S2/m小于1时,车辆到达分布用二项分布拟合效果好。车流波动性大,观测统计方差与平均值比S2/m大于

23、1时,车辆到达分布用负二项分布拟合效果较好。Homework 作业1: 某铁路与公路相交的平面交叉口,当火车通过交叉口时,横木护栏挡住汽车通行。每次火车通过时,平均封锁公路3min,公路上平均每分钟有4辆汽车到达交叉口。求火车通过交叉口时,汽车排队长度超过100m的概率(即排队汽车超过12辆的概率)。 作业2:推导泊松分布61待续62描述事件之间时间间隔的分布称为连续型分布。常用来描述车头时距、穿越空档、速度等交通流特性的分布特征。二. 连续型分布 通常情况下,在车辆到达之间的时间间隔(车头时距)是随机的,用连续型分布描述。负指数分布移位负指数分布爱尔朗分布韦布尔分布正态分布皮尔逊III型(P

24、earson type III)分布复合分布t1t3tN二. 连续型分布-车头时距车头时距是影响交通安全、道路通行能力和服务水平的重要交通流特性。道路通行能力往往是由特定条件下的车头时距分布决定。自由交通流拥挤交通流波动交通流% (Distribution)Time Gap (t) 1 2 3 4 5 6 7 8车头时距分布自由交通流车头时距大% (分布)t% (分布)实际 理论Random Distributiont% (分布)实际 理论几乎常数定值分布拥挤交通流车头时距小波动交通流车头时距复杂车头时距分布(1)基本公式计数间隔t内没有车辆到达(k=0)的概率为: P(0)=e-t 在具体的

25、时间间隔t内,如无车辆到达,则上次车到达和下次车到达之间,车头时距至少有t秒,换句话说,P(0)也是车头时距等于或大于t秒的概率,于是得:P(ht)=e-t 1、负指数分布-自由交通流二. 连续型分布 而车头时距小于t的概率则为: P(ht)=1-e-t 若Q表示每小时的交通量,则=Q/3600(辆/s),前式可以写成:P(ht)=e-Qt/3600 式中Qt/3600是到达车辆数的概率分布的平均值。若令M为负指数分布的均值,则应有: M=3600/Q=1/ 负指数分布的方差为: 负指数分布 用样本的均值m代替M、样本的方差S2代替D,即可算出负指数分布的参数。 此外,也可用概率密度函数来计算

26、。负指数分布的概率密度函数为:负指数分布泊松过程的到达间隔时间为负指数分布令 h 代表间隔时间,则概率 Ph t代表时间区间t 内没有顾客来的概率;由泊松分布 可知:P0(h t)= Ph t=et故间隔时间 h 的分布为 P h 0,k=1时为移位负指数二. 连续型分布7. 组合型分布概率分布函数 式中: a -受限(拥挤)交通流所占比例8. M3分布Cowan概率分布密度函数 式中: a -自由交通流所占比例二. 连续型分布交通流基本参数的关系交通量Q密度K车速V交通流基本参数交通流理论的核心内容之一三参数基本关系:Q=K*V交通流基本参数自由流速度 :车流密度趋于零,车辆可以畅行无阻时的

27、平均速度 (Free-flow Speed)vf阻塞密度 :车流密集到车辆无法移动(V=0)时密度。 (Jam Density) Kj临界密度 :即流量达到极大时的密度。 (Critical Density)Km临界速度 :即流量达到极大时的速度。 (Critical Speed)vm最大流量Qm :就是QV曲线上的峰值。 0流量交通流特征变量1、格林希尔茨(Green Shields)模型线性模型中等密度(一)速度密度关系vf free-flow speed (can be observed)Kj - jam density (can be estimated) 185-250vpmpl (

28、 Traffic Flow Fundamentals)2、格林柏(Greenberg)模型对数模型高密度(一)速度密度关系um = Design Speed / 2um = Optimal Speed, resulting in qmaxum : difficult to estimate3、安德伍德(Underwood)模型指数模型低密度(一)速度密度关系Km= Optimal Density, resulting in qmaxKm : difficult to estimate基于Green Shields线性模型及交通流基本关系:(二)流量密度关系同 理高密度格林柏格(Grenberg

29、)对数模型低密度安德伍德(Underwood)指数模型(二)流量密度关系 Qm、Vm和Km是划分交通是否拥挤的重要特征值。 当QQm、KKm、VVm时,交通拥挤 当QQm、KKm、VVm时,交通不拥挤。 (二)流量密度关系由Green Shields线性模型做变换得到:代入交通特性三参数基本关系模型,得到:(三)流量速度关系格林希尔茨(Green Shields)模型线性模型中等密度格林柏(Greenberg)模型对数模型高密度安德伍德(Underwood)模型指数模型低密度西北大学模型(Northwestern University)(1) 单阶段模型: Single-Regime ModelsShow Figure. 10.7Show Table 10.1多阶段模型-Multi-Regime Models Show Table 10.2The first difficulty is determining the breakpoint between regimes. Show Figure. 10.8 Show Table. 10. 3(2) 多阶段模型: Multi-Regime Models已知某公路畅行速度为Vf=80Kmh,饱和密度为Kj=96辆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论