福建省福州三牧中学2023学年中考考前最后一卷数学试卷含答案解析_第1页
福建省福州三牧中学2023学年中考考前最后一卷数学试卷含答案解析_第2页
福建省福州三牧中学2023学年中考考前最后一卷数学试卷含答案解析_第3页
福建省福州三牧中学2023学年中考考前最后一卷数学试卷含答案解析_第4页
福建省福州三牧中学2023学年中考考前最后一卷数学试卷含答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、福建省福州三牧中学2023学年中考考前最后一卷数学试卷注意事项1考生要认真填写考场号和座位序号。2测试卷所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,在RtABC中,ACB=90,BC=12,AC=5,分别以点A,B为圆心,大于线段AB长度的一半为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连接CD,则ACD的周长为()A13B17C18D252如图,O 是等边ABC 的外接圆,其半径为 3,

2、图中阴影部分的面积是( )ABC2D33如图,AB是O的一条弦,点C是O上一动点,且ACB=30,点E,F分别是AC,BC的中点,直线EF与O交于G,H两点,若O的半径为6,则GE+FH的最大值为()A6B9C10D124已知抛物线yx2+3向左平移2个单位,那么平移后的抛物线表达式是()Ay(x+2)2+3 By(x2)2+3 Cyx2+1 Dyx2+55下面计算中,正确的是()A(a+b)2=a2+b2 B3a+4a=7a2C(ab)3=ab3 Da2a5=a76的相反数是 ( )ABC3D-37如图,将木条a,b与c钉在一起,1=70,2=50,要使木条a与b平行,木条a旋转的度数至少是

3、()A10B20C50D708下列计算正确的是()Ax2x3x6B(m+3)2m2+9Ca10a5a5D(xy2)3xy69以x为自变量的二次函数y=x22(b2)x+b21的图象不经过第三象限,则实数b的取值范围是( )Ab1.25Bb1或b1Cb2D1b210如图,已知ABCD,ADCD,140,则2的度数为()A60B65C70D75二、填空题(本大题共6个小题,每小题3分,共18分)11如图,在平面直角坐标系xOy中,DEF可以看作是ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由ABC得到DEF的过程:_12如图,在RtABC中,ACB=90,将边BC沿斜边上的中线

4、CD折叠到CB,若B=48,则ACB=_13如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_米.14如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C若点A的坐标为(-6,4),则AOC的面积为 15计算(3)+(9)的结果为_16在平面直角坐标系中,已知,A(2,0),C(0,1),若P为线段OA上一动点,则CP+AP的最小值为_三、解答题(共8题,共72分)17(8分)如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.求反比例函数和一次函数的表达式;求当时自变量的取值范围.18(

5、8分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是 ;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率19(8分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?20(8分)如图,在ABC中,B90,AB4,BC1在BC上求作一点P,使PA+PBBC;(尺规作图,不写作法,保留作图痕迹)求BP的长21(8分)小明准备用一块矩形材料剪出如图所示的四边形ABC

6、D(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度(结果保留根号)22(10分)某种商品每天的销售利润元,销售单价元,间满足函数关系式:,其图象如图所示(1)销售单价为多少元时,该种商品每天的销售利润最大? 最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于21 元?23(12分)解不等式:124如图,在平行四边形ABCD中,ADAB(1)作出ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AFBE,垂足为点O,交BC于点F,连接EF求证:四边形ABFE为菱形2023学年模拟测试卷参考答案

7、(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、C【答案解析】在RtABC中,ACB=90,BC=12,AC=5,根据勾股定理求得AB=13.根据题意可知,EF为线段AB的垂直平分线,在RtABC中,根据直角三角形斜边的中线等于斜边的一半可得CD=AD=AB,所以ACD的周长为AC+CD+AD=AC+AB=5+13=18.故选C.2、D【答案解析】根据等边三角形的性质得到A=60,再利用圆周角定理得到BOC=120,然后根据扇形的面积公式计算图中阴影部分的面积即可【题目详解】ABC 为等边三角形,A=60,BOC=2A=120,图中阴影部分的面积= =3 故选D【答案点睛】本题

8、考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得BOC=120是解决问题的关键3、B【答案解析】首先连接OA、OB,根据圆周角定理,求出AOB=2ACB=60,进而判断出AOB为等边三角形;然后根据O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可【题目详解】解:如图,连接OA、OB,ACB=30,AOB=2ACB=60,OA=OB,AOB为等边三角形,O的半径为6,AB=OA=OB=6,点E,F分别是AC、BC的中点,EF=AB=3,要求GE+FH的最大值,即求GE+F

9、H+EF(弦GH)的最大值,当弦GH是圆的直径时,它的最大值为:62=12,GE+FH的最大值为:123=1故选:B【答案点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度确定GH的位置是解题的关键.4、A【答案解析】结合向左平移的法则,即可得到答案.【题目详解】解:将抛物线yx23向左平移2个单位可得y(x2)23,故选A.【答案点睛】此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.5、D【答案解析】直接利用完全平方公式以及合并同类项法则、积

10、的乘方运算法则分别化简得出答案【题目详解】A.(a+b)2=a2+b2+2ab,故此选项错误;B.3a+4a=7a,故此选项错误;C.(ab)3=a3b3,故此选项错误;D.a2a5=a7,正确。故选:D.【答案点睛】本题考查了幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式,解题的关键是掌握它们的概念进行求解.6、B【答案解析】先求的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1因此的相反数是故选B7、B【答

11、案解析】要使木条a与b平行,那么1=2,从而可求出木条a至少旋转的度数.【题目详解】解:要使木条a与b平行,1=2,当1需变为50 , 木条a至少旋转:70-50=20.故选B.【答案点睛】本题考查了旋转的性质及平行线的性质:两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补;夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.8、C【答案解析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案.【题目详解】x2x3x5,故选项A不合题意;(m+3)2m2+6m+9,故选项B不合题意;a10a5a5,故选项C符

12、合题意;(xy2)3x3y6,故选项D不合题意故选:C【答案点睛】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算.9、A【答案解析】二次函数yx22(b2)xb21的图象不经过第三象限,a10,0或抛物线与x轴的交点的横坐标均大于等于0.当0时,2(b2)24(b21)0,解得b.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1x22(b2)0,2(b2)24(b21)0,无解,此种情况不存在b.10、C【答案解析】由等腰三角形的性质可求ACD70,由平行

13、线的性质可求解【题目详解】ADCD,140,ACD70,ABCD,2ACD70,故选:C【答案点睛】本题考查了等腰三角形的性质,平行线的性质,是基础题二、填空题(本大题共6个小题,每小题3分,共18分)11、平移,轴对称【答案解析】分析:根据平移的性质和轴对称的性质即可得到由OCD得到AOB的过程详解:ABC向上平移5个单位,再沿y轴对折,得到DEF,故答案为:平移,轴对称点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小12、6【答案解析】B=48,ACB=90,所以A=42

14、,DC是中线,所以BCD=B=48,DCA=A=48,因为BCD=DCB=48,所以ACB=48-46=6.13、1【答案解析】根据题意,画出示意图,易得:RtEDCRtFDC,进而可得;即DC2=ED?FD,代入数据可得答案【题目详解】根据题意,作EFC,树高为CD,且ECF=90,ED=3,FD=12,易得:RtEDCRtDCF,有,即DC2=EDFD,代入数据可得DC2=31,DC=1,故答案为114、2【答案解析】解:OA的中点是D,点A的坐标为(6,4),D(1,2),双曲线y=经过点D,k=12=6,BOC的面积=|k|=1又AOB的面积=64=12,AOC的面积=AOB的面积BO

15、C的面积=121=215、-1【答案解析】测试卷分析:利用同号两数相加的法则计算即可得原式=(3+9)=1, 故答案为116、【答案解析】可以取一点D(0,1),连接AD,作CNAD于点N,PMAD于点M,根据勾股定理可得AD3,证明APMADO得,PMAP当CPAD时,CP+APCP+PM的值最小,最小值为CN的长【题目详解】如图,取一点D(0,1),连接AD,作CNAD于点N,PMAD于点M,在RtAOD中,OA2,OD1,AD3,PAMDAO,AMPAOD90,APMADO,即,PMAP,PC+APPC+PM,当CPAD时,CP+APCP+PM的值最小,最小值为CN的长CNDAOD,即C

16、N 所以CP+AP的最小值为故答案为:【答案点睛】此题考查勾股定理,三角形相似的判定及性质,最短路径问题,如何找到AP的等量线段与线段CP相加是解题的关键,由此利用勾股定理、相似三角形做辅助线得到垂线段PM,使问题得解.三、解答题(共8题,共72分)17、 (1) ,;(2)或.【答案解析】(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可【题目详解】(1)把代入得.反比例函数的表达式为把和代入得,解得一次函数的

17、表达式为.(2)由得当或时,.【答案点睛】本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点18、(1);(2)【答案解析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案【题目详解】解:(1)垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,甲投放了一袋是餐厨垃圾的概率是,故答案为:;(2)记这四类垃圾分别为A、B、C、D,画树状

18、图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为=【答案点睛】本题考查了用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:概率=所求情况数与总情况数之比19、(1);(1)时,取最大值,为.【答案解析】(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得【题目详解】解:(1)分别延长DE,FP,与BC的延长

19、线相交于G,H,AF=x,CH=x-4,设AQ=z,PH=BQ=6-z,PHEG,即,化简得z=,y=x=-x1+x (4x10);(1)y=-x1+x=-(x-)1+,当x=dm时,y取最大值,最大值是dm1【答案点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质20、 (1)见解析;(2)2.【答案解析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【题目详解】(1)如图所示,点P即为所求(2)设BPx,则CP1x,由(1)中作图知APCP1x,在RtABP中,由AB2+BP2AP2可得42+x2(1x)2,解得:x2,

20、所以BP2【答案点睛】考核知识点:勾股定理和线段垂直平分线.21、CD的长度为1717cm【答案解析】在直角三角形中用三角函数求出FD,BE的长,而FCAEABBE,而CDFCFD,从而得到答案.【题目详解】解:由题意,在RtBEC中,E=90,EBC=60,BCE=30,tan30=,BE=ECtan30=51=17(cm);CF=AE=34+BE=(34+17)cm,在RtAFD中,FAD=45,FDA=45,DF=AF=EC=51cm,则CD=FCFD=34+1751=1717,答:CD的长度为1717cm【答案点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.22、(1)10,1;(2)【答案解析】(1)将点代入中,求出函数解析式,再根据二次函数的性质求出最大值即可;(2)求出对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论