材料近代测试方法第五章表面成分分析_第1页
材料近代测试方法第五章表面成分分析_第2页
材料近代测试方法第五章表面成分分析_第3页
材料近代测试方法第五章表面成分分析_第4页
材料近代测试方法第五章表面成分分析_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、材料近代测试方法第五章表面成分分析第1页,共38页,2022年,5月20日,4点39分,星期四 第六章 表面成分分析良好的心是花园,良好的思想是根茎,良好的说话是花朵,良好的事业就是果子。 英国谚语第2页,共38页,2022年,5月20日,4点39分,星期四概论 表面及表面科学 固体的表面、或者说界面, 在人们的社会实践中起着极为重要的作用。表面科学的研究,对整个科学技术的发展具有重要的意义。表面科学包括表面物理、表面化学、表面电子学、表面生物学等。 第3页,共38页,2022年,5月20日,4点39分,星期四概论 表面及表面科学固体表面:物体与真空或气体的界面。固体表面可以指从单一的第一个原

2、子层到几个原子层厚度的表面层,甚至深达几个微米的表面层。在热力学平衡的条件下,固体表面的化学组成、微观结构、原子振动状态等均会与固体内部产生一定的差异。第4页,共38页,2022年,5月20日,4点39分,星期四概论 表面及表面科学 Since it requires energy to terminate the bonding, the surface is energetically less stable than the bulk. This energy is known as the surface free energy. In the case of liquid inter

3、faces, this energy is called surface tension. 第5页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术 表面分析技术是人们为了获取表面的物理、化学等方面的信息而采用的一些实验方法和手段。SampleExcitationsourceEnergy SelectorSignal DetectorEvent第6页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术一般地说,它是利用一种探测束如电子束、 离子束、光子束、中性粒子束等,有时还加上电场、磁场、热等的作用,来探测材料的形貌、化学组成、原子结构、原子状态、电

4、子状态等方面的信息。 第7页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术探测粒子 发射粒子分析方法名称简称 主要用途 e e低能电子衍射 LEED结构e e反射式高能电子衍射 RHEED结构e e俄歇电子能谱 AES成分e e扫描俄歇探针 SAM微区成分e e电离损失谱 ILS成分e 能量弥散x射线谱 EDXS成分e e俄歇电子出现电势谱 AEAPS成分e 软x射线出现电势谱SXAPS成分e e消隐电势谱DAPS成分e e电子能量损失谱EELS原子及电子态e I电子诱导脱附ESD吸附原子态及成分e e透射电子显微镜TEM形貌e e扫描电子显微镜SEM形貌ee扫描透射

5、电子显微镜STEM形貌第8页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术探测粒子 发射粒子分析方法名称简称 主要用途 I I离子探针质量分析IMMA微区成分I I静态次级离子质谱SSIMS成分I n次级中性离子质谱SNMS成分I I离子散射谱ISS成分、结构I I卢瑟福背散射谱RBS成分、结构I e离子中和谱INS最表层电子态I 离子激发x射线谱IEXS原子及电子态第9页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术探测粒子 发射粒子分析方法名称简称 主要用途 ex射线光电子谱XPS成分、化合态 e紫外线光电子谱UPS分子及固体电子态 e同

6、步辐射光电子谱SRPES成分、原子及电子态红外吸收谱IR原子态拉曼散射谱RAMAN原子态 扩展x射线吸收谱精细结构SEXAFS结构 角分辨光电子谱ARPES原子及电子态结构 I光子诱导脱附谱PSD原子态第10页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术探测粒子 发射粒子分析方法名称简称 主要用途 Ee场电子显微镜FEM结构EI场离子显微镜FIM结构EI场离子显微镜-原子探针AP-FIM结构及成分Ee场电子发射能量分布FEED电子态Ee扫描隧道显微镜STM形貌Tn热脱附谱TDS原子态n中性粒子碰撞诱导辐射SCANIIR成分n n分子束散射MBS结构、原子态AWAW声

7、显微镜AM形貌第11页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术部分表面分析设备的分析范围 第12页,共38页,2022年,5月20日,4点39分,星期四概论 表面分析技术XPS AES ILS ISS RBS SIMS 测氢 NoNoNoNoNoYes元素灵敏度均匀性 GoodGoodBadGoodGoodBad最小可检测灵敏度 10-2-10-310-2-10-310-910-2-10-310-2-10-310-4-10-5定量分析 GoodYesBadBadGoodBad化学态判断 GoodYesYesBadBadBad谱峰分辨率 GoodGoodGoodB

8、adBadGood识谱难易 GoodGoodGood-表面探测深度 MLsMLsMLsMLML-mML- MLs空间分辨率 BadGoodGoodBadBadGood无损检测 YesYesYesNoYesYes理论数据完整性 GoodYesBadYesGoodBad第13页,共38页,2022年,5月20日,4点39分,星期四俄歇电子能谱引言1925年Pierre Auger就在Wilson云室中发现了俄歇电子 1953年首次使用了电子束激发的俄歇电子能谱(Auger Electron Spectroscopy, AES) 1967年在Harris采用了微分锁相技术,使俄歇电子能谱获得了很高的

9、信背比后,才开始出现了商业化的俄歇电子能谱仪 俄歇电子能谱仪已发展为具有很高微区分辨能力的扫描俄歇微探针(Scanning Auger Microprobe, SAM) 第14页,共38页,2022年,5月20日,4点39分,星期四AES的特点表面性(1-2nm)AES具有很高的表面灵敏度,其检测极限约为10-3原子单层 可以同时分析除氢氦以外的所有元素半定量分析表面成份化学价态分析微区分析界面分析第15页,共38页,2022年,5月20日,4点39分,星期四AES原理俄歇电子的产生从图上可见,首先,外来的激发源与原子发生相互作用,把内层轨道(W轨道)上的一个电子激发出去,形成一个孔穴。外层(

10、X轨道)的一个电子填充到内层孔穴上,产生一个能量释放, 促使次外层(Y轨道)的电子激发发射出来而变成自由的俄歇电子。 图1俄歇电子的跃迁过程图2俄歇电子的跃迁过程的能级图第16页,共38页,2022年,5月20日,4点39分,星期四AES原理俄歇动能从俄歇电子跃迁过程可知,俄歇电子的动能只与元素激发过程中涉及的原子轨道的能量有关,而与激发源的种类和能量无关。俄歇电子的能量可以从跃迁过程涉及的原子轨道能级的结合能来计算。第17页,共38页,2022年,5月20日,4点39分,星期四AES原理俄歇电子强度 俄歇电子的强度是俄歇电子能谱进行元素定量分析的基础。但由于俄歇电子在固体中激发过程的复杂性,

11、到目前为止还难以用俄歇电子能谱来进行绝对的定量分析。俄歇电子的强度除与元素的存在量有关外,还与原子的电离截面,俄歇产率以及逃逸深度等因素有关 第18页,共38页,2022年,5月20日,4点39分,星期四AES原理激发电压在俄歇电子的激发过程中,一般采用较高能量的电子束作为激发源。在常规分析时,电子束的加速电压一般采用3kV。这样几乎所有元素都可以激发出特征俄歇电子。但在实际分析中,为了减少电子束对样品的损伤或降低样品的荷电效应,也可以采取更低的激发能。对于有些元素,由于特征俄歇电子的能量较高,一般可采用较高的激发源能量如5keV。在进行高空间分辨率的微区分析时,为了保证具有足够的空间分辨率,

12、也常用10keV以上的激发能量。此外,还必须注意元素的灵敏度因子是随激发源的能量而变的,而一般手册能提供的元素灵敏度因子均是在3.0keV, 5.0 keV和10.0 keV的数据。总之,在选择激发源能量时,必须考虑电离截面,电子损伤,能量分辨率以及空间分辨率等因素,视具体情况而定 第19页,共38页,2022年,5月20日,4点39分,星期四AES原理俄歇跃迁几率与X射线荧光几率从图上可见,当元素的原子序数小于19时(即轻元素), 俄歇跃迁几率(PA)在90%以上。直到原子序数增加到33时,荧光几率才与俄歇几率相等。 图5 俄歇跃迁几率及荧光几率与原子序数的关系第20页,共38页,2022年

13、,5月20日,4点39分,星期四样品制备俄歇电子能谱仪对分析样品有特定的要求,在通常情况下只能分析固体导电样品。经过特殊处理,绝缘体固体也可以进行分析。粉体样品原则上不能进行俄歇电子能谱分析,但经特殊制样处理也可以进行一定的分析。由于涉及到样品在真空中的传递和放置,待分析的样品一般都需要经过一定的预处理。主要包括样品大小,挥发性样品的处理,表面污染样品及带有微弱磁性的样品等的处理。第21页,共38页,2022年,5月20日,4点39分,星期四EAES与 XAES的比较 用电子束作为激发源的优点是:(1)电子束的强度大于X射线源多个数量级;(2)电子束可以进行聚焦,具有很高的空间分辨率;(3)电

14、子束可以扫描,具有很强的图像分析功能;(4)由于电子束束斑直径小,具有很强的深度分析能力。然而XAES 也具有很多优点:(1)由于X射线引发的二次电子较弱,俄歇峰具有很高的信/背比;(2)X射线引发的俄歇电子具有较高的能量分辨率;(3)X射线束对样品的表面损伤小得多。 第22页,共38页,2022年,5月20日,4点39分,星期四俄歇电子能谱图的分析技术 俄歇电子能谱的定性分析 由于俄歇电子的能量仅与原子本身的轨道能级有关,与入射电子的能量无关,也就是说与激发源无关。对于特定的元素及特定的俄歇跃迁过程,其俄歇电子的能量是特征的。由此,我们可以根据俄歇电子的动能用来定性分析样品表面物质的元素种类

15、。该定性分析方法可以适用于除氢、氦以外的所有元素,且由于每个元素会有多个俄歇峰,定性分析的准确度很高。因此,AES技术是适用于对所有元素进行一次全分析的有效定性分析方法,这对于未知样品的定性鉴定是非常有效的。 第23页,共38页,2022年,5月20日,4点39分,星期四俄歇电子能谱的定性分析为了提高高能端俄歇峰的信号强度,可以通过提高激发源电子能量的方法来获得。在进行定性分析时,通常采取俄歇谱的微分谱的负峰能量作为俄歇动能,进行元素的定性标定。在分析俄歇电子能谱图时,有时还必须考虑样品的荷电位移问题。一般来说,金属和半导体样品几乎不会荷电,因此不用校准。但对于绝缘体薄膜样品,有时必须进行校准

16、,通常以C KLL峰的俄歇动能为278.0 eV作为基准。在离子溅射的样品中,也可以用Ar KLL峰的俄歇动能214.0 eV来校准。在判断元素是否存在时,应用其所有的次强峰进行佐证,否则应考虑是否为其他元素的干扰峰。 第24页,共38页,2022年,5月20日,4点39分,星期四俄歇电子能谱的定性分析图8金刚石表面的Ti薄膜的俄歇定性分析谱 第25页,共38页,2022年,5月20日,4点39分,星期四表面元素的半定量分析俄歇电子能谱的定量分析方法很多,主要包括纯元素标样法,相对灵敏度因子法以及相近成分的多元素标样法。最常用和实用的方法是相对灵敏度因子法。该方法的定量计算可以用下式进行 式中

17、 ci - 第i种元素的摩尔分数浓度; Ii - 第i种元素的AES信号强度; Si - 第i种元素的相对灵敏度因子;第26页,共38页,2022年,5月20日,4点39分,星期四表面元素的半定量分析在定量分析中必须注意的是AES给出的相对含量也与谱仪的状况有关,因为不仅各元素的灵敏度因子是不同的,AES谱仪对不同能量的俄歇电子的传输效率也是不同的,并会随谱仪污染程度而改变。当谱仪的分析器受到严重污染时, 低能端俄歇峰的强度可以大幅度下降。AES仅提供表面13 nm厚的表面层信息,样品表面的C, O污染以及吸附物的存在也会严重影响其定量分析的结果。 还必须注意的是,由于俄歇能谱的各元素的灵敏度

18、因子与一次电子束的激发能量有关,因此,俄歇电子能谱的激发源的能量也会影响定量结果。 第27页,共38页,2022年,5月20日,4点39分,星期四化学价态信息虽然俄歇电子的动能主要由元素的种类和跃迁轨道所决定,但由于原子内部外层电子的屏蔽效应,芯能级轨道和次外层轨道上的电子的结合能在不同的化学环境中是不一样的,有一些微小的差异。这种轨道结合能上的微小差异可以导致俄歇电子能量的变化,这种变化就称作元素的俄歇化学位移,它取决于元素在样品中所处的化学环境。一般来说,由于俄歇电子涉及到三个原子轨道能级,其化学位移要比XPS的化学位移大得多。利用这种俄歇化学位移可以分析元素在该物种中的化学价态和存在形式

19、。 第28页,共38页,2022年,5月20日,4点39分,星期四化学信息对于相同化学价态的原子, 俄歇化学位移的差别主要和原子间的电负性差有关。电负性差越大,原子得失的电荷也越大, 因此俄歇化学位移也越大。对于电负性大的元素,可以获得部分电子荷负电。因此俄歇化学位移为正,俄歇电子的能量比纯态要高。 相反,对于电负性小的元素,可以失去部分电子荷正电。因此俄歇化学位移为负, 俄歇电子的能量比纯元素状态时要低。 第29页,共38页,2022年,5月20日,4点39分,星期四化学信息对于大多数情况,仅用简单的电荷势理论难以解释俄歇化学位移,这时必须考虑原子外弛豫能(极化能)的作用。俄歇化学位移应当用

20、式(19)计算。这样影响驰豫能大小的直接参数是离子半径r。元素的有效离子半径越小,极化作用越强,驰豫能数值越大。由于弛豫能项为负值,因此对正离子,极化作用使得俄歇动能降低,俄歇化学位移增加。对于负离子,极化作用使得俄歇动能增加,俄歇化学位移降低。 第30页,共38页,2022年,5月20日,4点39分,星期四图9 不同价态的镍氧化物的Ni MVV俄歇谱图10 不同价态的镍氧化物的Ni LMM俄歇谱第31页,共38页,2022年,5月20日,4点39分,星期四实验结果下面我们再分析一下其相邻原子的电负性差对俄歇化学位移的影响。图(11)和图(12)是化合价相同但电负性差不同的含硅化合物的Si L

21、VV和Si KLL俄歇谱5,10。从图(11)可知, Si3N4的Si LVV俄歇动能为80.1 eV, 俄歇化学位移为-8.7 eV。而SiO2的Si LVV的俄歇动能为72.5 eV, 俄歇化学位移为-16.3 eV。Si KLL俄歇谱图同样显示出这两种化合物中Si俄歇化学位移的差别。Si3N4的俄歇动能为1610.0 eV, 俄歇化学位移为-5.6 eV。SiO2的俄歇动能为1605.0 eV, 俄歇化学位移-10.5 eV. 第32页,共38页,2022年,5月20日,4点39分,星期四实验结果图11 电负性差对Si LVV谱的影响图12 电负性差对Si KLL谱的影响第33页,共38

22、页,2022年,5月20日,4点39分,星期四实验结果图13是几种氧化物的O KLL俄歇谱, 从图上可见,O KLL俄歇电子能量与氧化物的组成有很大关系。SiO2的O KLL俄歇动能为502.1 eV, 而TiO2的则为508.4 eV,其数值与PbO2的O KLL俄歇动能相近(508.6 eV)。 图13 原子驰豫势能效应对O KLL谱的影响第34页,共38页,2022年,5月20日,4点39分,星期四实验结果虽然在这些氧化物中氧都是以负二价离子O-2存在, 相应的电负性差也相近, 氧元素上的有效电荷也比较接近,但俄歇电子能量却相差甚远。这种现象用电荷势模型就难以解释,这时必须用弛豫能的影响才能给予满意的解释。根据式(19),这时原子外弛豫能(离子有效半径)将起主要作用。表1几种氧化物的结构化学参数氧化物R+(nm)电负性差O原子的有效电荷俄歇动能(eV) SiO2 0.041 1.7 -1.03 502.1 TiO2 0.068 1.9 -1.19 503.4 PbO2 0.084 1.7 -1.03 508.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论