2022年云南省新平彝族傣自治县第一中学高二数学第二学期期末教学质量检测模拟试题含解析_第1页
2022年云南省新平彝族傣自治县第一中学高二数学第二学期期末教学质量检测模拟试题含解析_第2页
2022年云南省新平彝族傣自治县第一中学高二数学第二学期期末教学质量检测模拟试题含解析_第3页
2022年云南省新平彝族傣自治县第一中学高二数学第二学期期末教学质量检测模拟试题含解析_第4页
2022年云南省新平彝族傣自治县第一中学高二数学第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设是函数的导函数,则的值为()ABCD2设函数在上存在导函数,对任意实数,都有,当时,若,则实数的最小值是( )ABCD3已知函数,若有且仅有两个整数,使得,则的取值范围

2、为( )ABCD4用四个数字1,2,3,4能写成( )个没有重复数字的两位数.A6B12C16D205z是z的共轭复数,若z+z=2,(z-zA1+iB-1-iC-1+iD1-i6已知,若(、均为正实数),根据以上等式,可推测、的值,则等于( )ABCD7若函数为奇函数,则ABCD8若,则( )ABCD9体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有( )A12种B7种C24种D49种10已知随机变量服从正态分布,且,则( )ABCD11设,则 ()AB10CD10012已知函数(其中,)在区间上单调递减,则实数的取值范围是( )ABCD二、填空题:本题共4小

3、题,每小题5分,共20分。13某次考试结束后,甲、乙、丙三位同学讨论考试情况.甲说:“我的成绩一定比丙高”.乙说:“你们的成绩都没有我高”.丙说:“你们的成绩都比我高”成绩公布后,三人成绩互不相同且三人中恰有一人说得不对,则这三人中成绩最高的是_.14函数的最小正周期是_15若对任意,都有恒成立,则实数的取值范围是_.16若双曲线的焦点在轴上,焦距为,且过点,则双曲线的标准方程为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆(为参数),A,B是C上的动点,且满足(O为坐标原点),以原点O为极点,x轴的正半轴为极轴建立坐标系,点D的极坐标为.(1)求椭圆C

4、的极坐标方程和点D的直角坐标;(2)利用椭圆C的极坐标方程证明为定值.18(12分)在中,角的对边分别为,且.(1)求;(2)若,求的面积.19(12分)已知函数()求函数处的切线方程;()时,.20(12分)已知向量,满足,(1)求关于k的解析式f(k)(2)若,求实数k的值(3)求向量与夹角的最大值21(12分)在平面直角坐标系中,直线的参数方程为 (为参数)在以原点为极点,轴正半轴为极轴的极坐标系中,圆的方程为.(1)写出直线的普通方程和圆的直角坐标方程;(2)若点坐标为,圆与直线交于两点,求的值22(10分)如图,在三棱锥中,在底面上的射影在上,于.(1)求证:平行平面,平面平面;(2

5、)若,求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误2、A【解析】构造函数,根据等式可得出函数为偶函数,利用导数得知函数在上单调递减,由偶函数的性质得出该函数在上单调递增,由,得出,利用函数的单调性和偶函数的性质解出该不等式即可.【详解】构造函数,对任意实数,都有

6、,则,所以,函数为偶函数,.当时,则函数在上单调递减,由偶函数的性质得出函数在上单调递增,即,即,则有,由于函数在上单调递增,即,解得,因此,实数的最小值为,故选A.【点睛】本题考查函数不等式的求解,同时也涉及函数单调性与奇偶性的判断,难点在于根据导数不等式的结构构造新函数,并利用定义判断奇偶性以及利用导数判断函数的单调性,考查分析问题和解决问题的能力,属于难题.3、B【解析】分析:数,若有且仅有两个整数,使得,等价于有两个整数解,构造函数,利用导数判断函数的极值点在,由零点存在定理,列不等式组,从而可得结果.详解:因为所以函数,若有且仅有两个整数,使得,等价于有两个整数解,设,令,令恒成立,

7、单调递减,又,存在,使递增,递减,若解集中的整数恰为个,则是解集中的个整数,故只需,故选B.点睛:本题主要考查不等式有解问题以及方程根的个数问题,属于难题.不等式有解问题不能只局限于判别式是否为正,不但可以利用一元二次方程根的分布解题,还可以转化为有解(即可)或转化为有解(即可),另外,也可以结合零点存在定理,列不等式(组)求解.4、B【解析】根据题意,由排列数公式计算即可得答案.【详解】根据题意,属于排列问题,则一共有种不同的取法.即共有12个没有重复数字的两位数.故选B.【点睛】本题考查排列数公式的应用,注意区分排列、组合、放回式抽取和不放回抽取的不同.5、D【解析】试题分析:设z=a+b

8、i,z=a-bi,依题意有2a=2,-2b=2,故考点:复数概念及运算【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.6、B【解析】根据前面几个等式归纳出一个关于的等式,再令可得出和的值,由此可计算出的值.【详解】,由上可归纳出,

9、当时,则有,因此,故选B.【点睛】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.7、A【解析】分析:运用奇函数的定义,可得,再计算即可详解:函数为奇函数,故选点睛:本题主要考查的是奇函数的定义,分段函数的应用,属于基础题。根据函数奇偶性的性质是解题的关键8、D【解析】由于两个对数值均为正,故m和n一定都小于1,再利用对数换底公式,将不等式等价变形为以10为底的对数不等式,利用对数函数的单调性比较m、n的大小即可【详解】0n1,0m1且即lg0.5()0lg0.5()0lg0.50,lgm0,lgn0lgnlgm0即lgnlgmnm1mn0故选D【点睛

10、】本题考查了对数函数的图象和性质,对数的运算法则及其换底公式的应用,利用图象和性质比较大小的方法9、D【解析】第一步,他进门,有7种选择;第二步,他出门,有7种选择根据分步乘法计数原理可得他进出门的方案有7749(种)10、A【解析】分析:根据随机变量服从正态分布,求得其图象的对称轴,再根据曲线的对称性,即可求解答案详解:由题意,随机变量服从正态分布,所以,即图象的对称轴为,又由,则,则,故选A点睛:本题主要考查了正态分布的应用,其中熟记正态分布的图象关于对称,利用图象的对称性求解相应的概率是解答的关键,着重考查了推理与论证能力11、B【解析】利用复数的除法运算化简为的形式,然后求得的表达式,

11、进而求得.【详解】,.故选B.【点睛】本小题主要考查复数的除法运算,考查复数的平方和模的运算,属于基础题.12、D【解析】分类讨论a的范围,根据真数的符号以及单调性,求出a的范围【详解】解:函数yloga(8ax)(其中a0,a1)在区间1,4上单调递减,当a1时,由函数t8ax在区间1,4上单调递减且t0,故84a0,求得1a1当0a1时,由函数t8ax在区间1,4上单调递减,可得函数yloga(8ax)在区间1,4上单调递增,这不符合条件综上,实数a的取值范围为(1,1),故选:D【点睛】本题主要考查复合函数的单调性,对数函数、一次函数的性质,属于中档题二、填空题:本题共4小题,每小题5分

12、,共20分。13、甲【解析】分别假设说对的是甲,乙,丙,由此分析三个人的话,能求出结果.【详解】若甲对,则乙丙可能都对,可能都错,可能丙对,乙错,符合;若乙对,则甲丙可能都对,可能都错,不符;若丙对,则甲乙可能都对,可能甲对,乙错,符合,综上,甲丙对,乙错,则这三人中成绩最高的是甲.故答案为:甲.【点睛】本题考查合情推理的问题,考查分类与讨论思想,是基础题.14、1【解析】直接利用余弦函数的周期公式求解即可【详解】函数的最小正周期是:1故答案为1【点睛】本题考查三角函数的周期的求法,是基本知识的考查15、【解析】根据()代入中求得的最大值,进而得到实数的取值范围。【详解】因为,所以(当且仅当时

13、取等号);所以,即的最大值为,即实数的取值范围是;故答案为:【点睛】本题考查不等式恒成立问题的解题方法,解题关键是利用基本不等式求出的最大值,属于中档题。16、【解析】设双曲线的标准方程为,利用双曲线的定义求出的值,结合焦距求出的值,从而可得出双曲线的标准方程.【详解】设双曲线的标准方程为,由题意知,该双曲线的左、右焦点分别为、,由双曲线的定义可得,则,因此,双曲线的标准方程为.故答案为:.【点睛】本题考查过点求双曲线的方程,在双曲线的焦点已知的前提下,可以利用定义来求双曲线的标准方程,也可以利用待定系数法求解,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或

14、演算步骤。17、(1),;(2)证明见解析【解析】(1)利用参数方程、极坐标方程与直角坐标方程的互化公式即可求出椭圆C的极坐标方程,再利用极坐标与直角坐标的互化公式求出点D的直角坐标即可;(2)利用(1)中椭圆C的极坐标方程,设,根据极坐标系中和的定义,结合三角函数诱导公式即可证明.【详解】(1)由题意可知,椭圆C的普通方程为,把代入椭圆C的普通方程可得,椭圆C的极坐标方程为, 因为点D的极坐标为,所以,解得,所以点D的直角坐标为. (2)证明:由(1)知,椭圆C的极坐标方程为,变形得,由,不妨设,所以,所以为定值.【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化公式及利用极坐标系中和

15、的定义求解椭圆中的定值问题;考查逻辑推理能力、转化与化归能力和运算求解能力;属于中档题.18、(1)(2)【解析】(1)由正弦定理把已知角的关系转化为边的关系,再由余弦定理求得,从而求得;(2)由(1)及代入可解得,再由求得面积【详解】解:(1)由及正弦定理得:,由余弦定理得:,(2)由,及,得,的面积为.【点睛】本题考查正弦定理和余弦定理,考查三角形面积公式,解题关键是由正弦定理把已知角的关系转化为边的关系19、 ();().【解析】()对函数求导,再令x=1,可求得,回代可知 ,由导数可求得切线方程。()由, 令由导数可知,在时恒成立。下证,所以。【详解】() 函数的定义域为因为, 所以,

16、即, 所以, 令,得, 所以函数在点处的切线方程为,即. () 因为,令,则,因为,所以,所以在,上为减函数,又因为,所以,当时,此时,;当时,此时, 假设有最小值 ,则,即. 若,当时,;若,当时,所以,不存在正数,使. 所以,当,且时,所以,解得: .【点睛】本题综合考查求函数表达式与求曲线在某点处的切线方程,及用分离参数法求参数范围。注意本题分离出的函数最小值取不到所以最后要取等号。20、(1)(2)(3)【解析】(1)根据向量的数量积即可(2)根据向量平行时的条件即可(3)根据向量的夹角公式即可【详解】(1)由已知,有,又因为,得,所以,即(2)因为,所以,则与同向因为,所以,即,整理

17、得,所以,所以当时,(3)设与的夹角为,则当,即时,取最小值,此时【点睛】本题主要考查了向量的平以及数量积和夹角,属于基础题21、(1)(2)【解析】试题分析:(1)由加减消元得直线的普通方程,由得圆的直角坐标方程;(2)把直线l的参数方程代入圆C的直角坐标方程,由直线参数方程几何意义得|PA|+|PB|=|t1|+|t2|=t1+t2,再根据韦达定理可得结果试题解析:解:()由得直线l的普通方程为x+y3=0又由得 2=2sin,化为直角坐标方程为x2+(y)2=5;()把直线l的参数方程代入圆C的直角坐标方程,得(3t)2+(t)2=5,即t23t+4=0设t1,t2是上述方程的两实数根,所以t1+t2=3又直线l过点P,A、B两点对应的参数分别为t1,t2,所以|PA|+|PB|=|t1|+|t2|=t1+t2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论