山东省平度市九中2022年数学高二第二学期期末调研模拟试题含解析_第1页
山东省平度市九中2022年数学高二第二学期期末调研模拟试题含解析_第2页
山东省平度市九中2022年数学高二第二学期期末调研模拟试题含解析_第3页
山东省平度市九中2022年数学高二第二学期期末调研模拟试题含解析_第4页
山东省平度市九中2022年数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题

2、目要求的。1如图,在平行四边形ABCD中,E为DC边的中点,且,则 ( )ABCD2下列说法错误的是( )A在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C线性回归方程对应的直线至少经过其样本数据点中的一个点D在回归分析中,相关指数越大,模拟的效果越好3用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是( )A在上没有零点B在上至少有一个零点C在上恰好有两个零点D在上至少有两个零点4一个盒子里有7只好的晶体管、5只坏的晶体管,任取两次,每次取一只,每一次取后不放回,在第一次取到好的条件下,第

3、二次也取到好的概率( )ABCD5己知某物体的温度(单位:摄氏度)随时间t(单位:分钟)的变化规律是m2t+(t0,m0),若物体的温度总不低于2摄氏度,则实数m的取值范围是()A,+)B,+)C,+)D(1,+6下列函数中,值域为的偶函数是( )ABCD7函数f(x)=3ABCD8设集合,若,则 ( )ABCD9已知直线(t为参数)与圆相交于B、C两点,则的值为( )ABCD10若函数的定义域为,则的取值范围为( )ABCD11已知随机变量的分布列为( )01 若,则的值为( )ABCD122018年6月14日,世界杯足球赛在俄罗斯拉开帷幕.通过随机调查某小区100名性别不同的居民是否观看世

4、界杯比赛,得到以下列联表:观看世界杯不观看世界杯总计男402060女152540总计5545100经计算的观测值.附表:0.050.0250.0100.0050.0013.8415.0246.6357.87910.828参照附表,所得结论正确的是( )A有以上的把握认为“该小区居民是否观看世界杯与性别有关”B有以上的把握认为“该小区居民是否观看世界杯与性别无关”C在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”D在犯错误的概率不超过0.001的前提下,认为“该小区居民是否观看世界杯与性别无关”二、填空题:本题共4小题,每小题5分,共20分。13在的展开式中,含

5、项的系数是_.14设函数的定义域为,若对于任意,当时,恒有,则称点为函数图象的对称中心.研究函数的某一个对称中心,并利用对称中心的上述定义,可得到的值为_.15设,关于的不等式在区间上恒成立,其中,是与无关的实数,且,的最小值为1.则的最小值_.16将4个相同的白球、5个相同的黑球、6个相同的红球放入4个不同盒子中的3个中,使得有1个空盒且其他3个盒子中球的颜色齐全的不同放法共有 种.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)(理科学生做)某一智力游戏玩一次所得的积分是一个随机变量,其概率分布如下表,数学期望.(1)求a和b的值;(2)某同学连续

6、玩三次该智力游戏,记积分X大于0的次数为Y,求Y的概率分布与数学期望.X036Pab18(12分)已知函数.(1)当时,求关于的不等式的解集;(2)若关于的不等式有解,求的取值范围.19(12分)已知函数f(x)x3(a0,且a1)(1)讨论f(x)的奇偶性;(2)求a的取值范围,使f(x)0在定义域上恒成立20(12分)某学校高三年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制,各等级划分标准见下表百分制85分及以上70分到84分60分到69分60分以下等级ABCD规定:A,B,C三级为合格等级,D为不合格等级为了解该校高三年级学生身

7、体素质情况,从中抽取了n名学生的原始成绩作为样本进行统计按照,的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示求n和频率分布直方图中的x,y的值,并估计该校高一年级学生成绩是合格等级的概率;根据频率分布直方图,求成绩的中位数精确到;在选取的样本中,从A,D两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是A等级的概率21(12分)已知函数(I)求曲线在点处的切线方程()若直线为曲线的切线,且经过原点,求直线的方程及切点坐标22(10分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数,),已知直线的方程为.(1)设是曲线上的

8、一个动点,当时,求点到直线的距离的最小值;(2)若曲线上的所有点均在直线的右下方,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】利用向量的线性运算可得的表示形式.【详解】,故选:A【点睛】本题考查向量的线性运算,用基底向量表示其余向量时,要注意围绕基底向量来实现向量的转化,本题属于容易题.2、C【解析】对于A,统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法,正确;对于B,残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好,正确;对于C,线性回归方程对应的直线过样本中心点,不一定过

9、样本数据中的点,故C错误;对于D,回归分析中,相关指数R2越大,其模拟的效果就越好,正确故选C.3、D【解析】分析:利用反证法证明,假设一定是原命题的完全否定,从而可得结果.详解: 因为“至多有一个”的否定是“至少有两个”,所以用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是在上至少有两个零点,故选D.点睛:反证法的适用范围是,(1)否定性命题;(2)结论涉及“至多”、“至少”、“无限”、“唯一”等词语的命题;(3)命题成立非常明显,直接证明所用的理论较少,且不容易证明,而其逆否命题非常容易证明;(4)要讨论的情况很复杂,而反面情况较少4、C【解析】第一次取到好的条件

10、下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率,计算得到答案.【详解】第一次取到好的条件下,第二次即:6只好的晶体管、5只坏的晶体管中取到好的概率 故答案选C【点睛】本题考查了条件概率,将模型简化是解题的关键,也可以用条件概率公式计算.5、C【解析】直接利用基本不等式求解即可【详解】由基本不等式可知,当且仅当“m2t21t”时取等号,由题意有,即,解得故选:C【点睛】本题考查基本不等式的运用,注意等号成立的条件,属于基础题6、C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故

11、选C考点:1、函数的奇偶性;2、函数的值域7、B【解析】取特殊值排除得到答案.【详解】f(x)=3x故答案选B【点睛】本题考查了函数图像的判断,特殊值可以简化运算.8、C【解析】 集合, 是方程的解,即 ,故选C9、B【解析】根据参数方程与普通方程的互化方法,然后联立方程组,通过弦长公式,即可得出结论【详解】曲线(为参数),化为普通方程,将代入,可得,故选B【点睛】本题主要考查把参数方程、极坐标方程化为直角坐标方程的方法,考查直线与圆的位置关系,属于中档题10、C【解析】分析:由题得恒成立,再解这个恒成立问题即得解.详解:由题得恒成立,a=0时,不等式恒成立.a0时,由题得综合得故答案为C.点

12、睛:(1)本题主要考查函数的定义域和二次不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析转化能力数形结合思想方法.(2)解答本题恒成立时,一定要讨论a=0的情况,因为不一定时一元二次不等式.11、A【解析】先由题计算出期望,进而由计算得答案。【详解】由题可知随机变量的期望,所以方差,解得,故选A【点睛】本题考查随机变量的期望与方差,属于一般题。12、C【解析】分析:根据题目的条件中已经给出这组数据的观测值,把所给的观测值同节选的观测值表进行比较,发现它大于7.879,在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”详解:由题意算得, ,参照附表,可得

13、在犯错误的概率不超过0.005的前提下,认为“该小区居民是否观看世界杯与性别有关”故选:A点睛:本题考查独立性检验的应用,属基础题二、填空题:本题共4小题,每小题5分,共20分。13、84【解析】通过求出各项二项展开式中项的系数,利用组合数的性质求出系数和即可得结果.【详解】的展开式中,含项的系数为:,故答案是:84.【点睛】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.14、.【解析】分析:根据题意知函数f(x)图象的对称中心坐标为(1,1),即x1+x2=2时,总有f(x1)+f(x2)=2,再利用倒序相加,即可得到结果详解:解:

14、函数,f(1)231,当x1+x22时,f(x1)+f(x2)2x1+2x2+3cos(x1)+3cos(x2)622+062,f(x)的对称中心为(1,1),f()+f()+f()+f()+f()2(2017)11故答案为1点睛:这个题目考查了函数的对称性,一般 函数的对称轴为a, 函数的对称中心为(a,0);15、【解析】化简,结合单调性及题意计算出,的表达式,由的最小值为1计算出结果【详解】因为,所以在上单调递增,又关于的不等式在上恒成立,所以,因为的最小为1,所以,即,所以,当且仅当,即时取“”,即的最小值为.【点睛】本题考查了计算最值问题,题目较为复杂,理清题意,结合函数的单调性求出

15、最值,运用基本不等式计算出结果,紧扣题意是解题关键,考查了学生转化能力16、720【解析】试题分析:本题可以分步来做:第一步:首先从4个盒子中选取3个,共有4种取法;第二步:假定选取了前三个盒子,则第四个为空,不予考虑由于前三个盒子中的球必须同时包含黑白红三色,所以我们知道,每个盒子中至少有一个白球,一个黑球和一个红球第三步:这样,白球还剩一个可以自由支配,它可以放在三个盒子中任意一个,共3种放法黑球还剩两个可以自由支配,这两个球可以分别放入三个盒子中的任意一个,这里有两种情况:一是两个球放入同一个盒子,有3种放法;二是两个球放入不同的两个盒子,有3种放法综上,黑球共6种放法红球还剩三个可以自

16、由支配,分三种情况:一是三个球放入同一个盒子,有3中放法二是两个球放入同一个盒子,另外一个球放入另一个盒子,有6种放法三是每个 盒子一个球,只有1种放法综上,红球共10种放法所以总共有43610=720种不同的放法考点:排列、组合;分布乘法原理;分类加法原理点评:本题考查排列、组合的运用,注意本题中同色的球是相同的对于较难问题,我们可以采取分步来做三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) .(2)分布列见解析,.【解析】分析:(1)根据分布列的性可知所有的概率之和为1然后再根据期望的公式得到第二个方程联立求解即可;(2)根据二项分布求解即可.详解:(1)因为

17、,所以,即 又,得 联立,解得, (2),依题意知,故, 故的概率分布为的数学期望为点睛:考查分布列的性质,二项分布,认真审题,仔细计算是解题关键,属于基础题.18、(1);(2)【解析】(1)将代入不等式,得到,再通过讨论的范围,即可求出结果;(2)先根据不等式有解,可得只需大于等于的最小值,进而可求出结果.【详解】(1)当时,不等式为,若,则,即,若,则,舍去,若,则,即,综上,不等式的解集为;(2)当且仅当时等号成立,题意等价于,的取值范围为.【点睛】本题主要考查含绝对值不等式的解法,以及不等式成立的问题,根据含绝对值不等式的性质以及分类讨论的思想,即可求解,属于常考题型.19、(1)函

18、数f(x)是偶函数(2)(1,)【解析】(1)先求函数f(x)的定义域,再判断f(x)与f(x)是否相等即可得到结果;(2)由f(x)是偶函数可知只需讨论x0时的情况,则有x30,从而求得结果.【详解】(1)由于ax10,则ax1,得x0,函数f(x)的定义域为x|x0对于定义域内任意x,有f(x)(x)3(x)3(x)3x3f(x),函数f(x)是偶函数(2)由(1)知f(x)为偶函数,只需讨论x0时的情况,当x0时,要使f(x)0,则x30,即0,即0,则ax1.又x0,a1.当a(1,)时,f(x)0.【点睛】本题考查判断函数奇偶性的方法和恒成立问题,判断函数的奇偶性先求定义域,再判断f

19、(x)与f(x)是否相等或者互为相反数,相等即为偶函数,互为相反数则为奇函数,属中档题.20、(1),;合格等级的概率为;(2)中位数为;(3)【解析】由题意求出样本容量,再计算x、y的值,用频率估计概率值;根据频率分布直方图,计算成绩的中位数即可;由茎叶图中的数据,利用列举法求出基本事件数,计算所求的概率值【详解】由题意知,样本容量,;因为成绩是合格等级人数为:人,抽取的50人中成绩是合格等级的概率为,即估计该校高一年级学生成绩是合格等级的概率为;根据频率分布直方图,计算成绩的中位数为;由茎叶图知,A等级的学生有3人,D等级的学生有人,记A等级的学生为A、B、C,D等级的学生为d、e、f、g、h,从这8人中随机抽取2人,基本事件是:AB、AC、Ad、Ae、Af、Ag、Ah、BC、Bd、Be、Bf、Bg、Bh、Cd、Ce、Cf、Cg、Ch、de、df、dg、dh、ef、eg、eh、fg、fh、gh共28个;至少有一名是A等级的基本事件是:AB、AC、Ad、Ae、Af、Ag、Ah、BC、Bd、Be、Bf、Bg、Bh、Cd、Ce、Cf、Cg、Ch共18个;故所求的概率为【点睛】本题考查了频率分布直方图的应用问题,也考查了列举法求古典概型的概率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论