苏州市昆山市市级名校2023学年毕业升学考试模拟卷数学卷含答案解析_第1页
苏州市昆山市市级名校2023学年毕业升学考试模拟卷数学卷含答案解析_第2页
苏州市昆山市市级名校2023学年毕业升学考试模拟卷数学卷含答案解析_第3页
苏州市昆山市市级名校2023学年毕业升学考试模拟卷数学卷含答案解析_第4页
苏州市昆山市市级名校2023学年毕业升学考试模拟卷数学卷含答案解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、苏州市昆山市市级名校2023学年毕业升学考试模拟卷数学卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若a与3互为倒数,则a=()A3B3C13D-2已知关于x的一元二次方程有两个相等的实根,则k的值为( )ABC2或3D或3如图所示,二次函数y=ax2+bx+c(a0)的图象经过点(1,2

2、),且与x轴交点的横坐标分别为x1、x2,其中2x11,0 x21下列结论:4a2b+c0;2ab0;abc0;b2+8a4ac其中正确的结论有()A1个B2个C3个D4个4的绝对值是()ABC2D25如图,矩形ABOC的顶点A的坐标为(4,5),D是OB的中点,E是OC上的一点,当ADE的周长最小时,点E的坐标是()A(0,)B(0,)C(0,2)D(0,)6关于的一元二次方程有两个不相等的实数根,则实数的取值范围是ABCD7如图,在ABC中,CAB75,在同一平面内,将ABC绕点A逆时针旋转到ABC的位置,使得CCAB,则CAC为()A30B35C40D508已知一元二次方程2x2+2x1

3、=0的两个根为x1,x2,且x1x2,下列结论正确的是()Ax1+x2=1Bx1x2=1C|x1|x2|Dx12+x1=9抛物线ymx28x8和x轴有交点,则m的取值范围是()Am2Bm2Cm2且m0Dm2且m010是两个连续整数,若,则分别是( ).A2,3B3,2C3,4D6,8二、填空题(共7小题,每小题3分,满分21分)11如图,点A是直线y=x与反比例函数y=的图象在第二象限内的交点,OA=4,则k的值为_12如图,将一块含有30角的直角三角板的两个顶点叠放在长方形的两条对边上,如果1=27,那么2=_13如图,PC是O的直径,PA切O于点P,AO交O于点B;连接BC,若,则_.14

4、若a,b互为相反数,则a2b2=_15已知,在同一平面内,ABC50,ADBC,BAD的平分线交直线BC于点E,那么AEB的度数为_16如图,CD是O直径,AB是弦,若CDAB,BCD=25,则AOD=_17如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升_cm三、解答题(共7小题,满分69分)18(10分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45、35已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度(结果保留整数)(参考数据:sin35=0.57,cos35=0

5、.82,tan35=0.70)19(5分)我市某中学艺术节期间,向全校学生征集书画作品九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率20(8分)已知:如图,抛物线y=x

6、2+bx+c与x轴交于A(-1,0)、B两点(A在B左),y轴交于点C(0,-3)(1)求抛物线的解析式;(2)若点D是线段BC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上是否存在以B、C、E、P为顶点且以BC为一边的平行四边形?若存在,求出点P的坐标;若不存在,请说明理由 21(10分)如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点求m的值及C点坐标;在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由为抛物线上一点,它关于直线BC的对称点为Q当

7、四边形PBQC为菱形时,求点P的坐标;点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由22(10分)如图,在ABC中,AB=BC,CDAB于点D,CD=BDBE平分ABC,点H是BC边的中点.连接DH,交BE于点G.连接CG.(1)求证:ADCFDB;(2)求证:(3)判断ECG的形状,并证明你的结论.23(12分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.24(14分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元求该省第二、三季度投资额的平均增长率20

8、23学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【答案解析】测试卷分析:根据乘积是1的两个数互为倒数,可得3a=1,a=13故选C.考点:倒数2、A【答案解析】根据方程有两个相等的实数根结合根的判别式即可得出关于k的方程,解之即可得出结论【题目详解】方程有两个相等的实根,=k2-423=k2-24=0,解得:k=故选A【答案点睛】本题考查了根的判别式,熟练掌握“当=0时,方程有两个相等的两个实数根”是解题的关键3、C【答案解析】首先根据抛物线的开口方向可得到a0,抛物线交y轴于正半轴,则c0,而抛物线与x轴的交点中,2x11、0 x21

9、说明抛物线的对称轴在10之间,即x=1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断【题目详解】由图知:抛物线的开口向下,则a0;抛物线的对称轴x=1,且c0; 由图可得:当x=2时,y0,即4a2b+c0,故正确; 已知x=1,且a0,所以2ab0,故正确; 抛物线对称轴位于y轴的左侧,则a、b同号,又c0,故abc0,所以不正确; 由于抛物线的对称轴大于1,所以抛物线的顶点纵坐标应该大于2,即:2,由于a0,所以4acb28a,即b2+8a4ac,故正确; 因此正确的结论是 故选:C【答案点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征

10、等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键4、B【答案解析】根据求绝对值的法则,直接计算即可解答【题目详解】,故选:B【答案点睛】本题主要考查求绝对值的法则,掌握负数的绝对值等于它的相反数,是解题的关键5、B【答案解析】解:作A关于y轴的对称点A,连接AD交y轴于E,则此时,ADE的周长最小四边形ABOC是矩形,ACOB,AC=OBA的坐标为(4,5),A(4,5),B(4,0)D是OB的中点,D(2,0)设直线DA的解析式为y=kx+b,直线DA的解析式为当x=0时,y=,E(0,)故选B6、A【答案解析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m

11、的取值范围即可【题目详解】关于x的一元二次方程x23x+m=0有两个不相等的实数根,=b24ac=(3)241m0,m,故选A【答案点睛】本题考查了根的判别式,解题的关键在于熟练掌握一元二次方程根的情况与判别式的关系,即:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数根;(3)0方程没有实数根7、A【答案解析】根据旋转的性质可得AC=AC,BAC=BAC,再根据两直线平行,内错角相等求出ACC=CAB,然后利用等腰三角形两底角相等求出CAC,再求出BAB=CAC,从而得解【题目详解】CCAB,CAB75,CCACAB75,又C、C为对应点,点A为旋转中心,ACAC,即ACC为

12、等腰三角形,CAC1802CCA30故选A【答案点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键8、D【答案解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x20,x1x20,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断【题目详解】根据题意得x1+x2=1,x1x2=,故A、B选项错误;x1+x20,x1x20,x1、x2异号,且负数的绝对值大,故C选项错误;x1为一元二次方程2x2+2x1=0的根,2x12+2x11=0,x12+x1=,故D选项正确,故选D【答案点睛】本题考

13、查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键.9、C【答案解析】根据二次函数的定义及抛物线与x轴有交点,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围【题目详解】解:抛物线和轴有交点, ,解得:且故选【答案点睛】本题考查了抛物线与x轴的交点、二次函数的定义以及解一元一次不等式组,牢记“当时,抛物线与x轴有交点是解题的关键10、A【答案解析】根据,可得答案【题目详解】根据题意,可知,可得a=2,b=1故选A【答案点睛】本题考查了估算无理数的大小,明确是解题关键二、填空题(共7小题,每小题3分,满分21分)11、4【答案解析】作ANx轴于N,可设A(x

14、,x),在RtOAN中,由勾股定理得出方程,解方程求出x=2,得出A(2,2),即可求出k的值【题目详解】解:作ANx轴于N,如图所示:点A是直线y=x与反比例函数y=的图象在第二象限内的交点,可设A(x,x)(x0),在RtOAN中,由勾股定理得:x2+(x)2=42,解得:x=2,A(2,2),代入y=得:k=22=4;故答案为4【答案点睛】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A的坐标是解决问题的关键12、57.【答案解析】根据平行线的性质和三角形外角的性质即可求解.【题目详解】由平行线性质及外角定理,可得21+30=27+30=57.【答案

15、点睛】本题考查平行线的性质及三角形外角的性质.13、26【答案解析】根据圆周角定理得到AOP=2C=64,根据切线的性质定理得到APO=90,根据直角三角形两锐角互余计算即可【题目详解】由圆周角定理得:AOP=2C=64PC是O的直径,PA切O于点P,APO=90,A=90AOP=9064=26故答案为:26【答案点睛】本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键14、1【答案解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【题目详解】a,b互为相反数,a+b=1,a2b2=(a+b)(ab)=1,故答案为1【答案点睛】本题考查了公式法

16、分解因式以及相反数的定义,正确分解因式是解题关键15、65或25【答案解析】首先根据角平分线的定义得出EAD=EAB,再分情况讨论计算即可【题目详解】解:分情况讨论:(1)AE平分BAD,EAD=EAB,ADBC,EAD=AEB,BAD=AEB,ABC50,AEB= (180-50)=65(2)AE平分BAD,EAD=EAB= ,ADBC,AEB=DAE=,DAB=ABC,ABC50,AEB= 50=25故答案为:65或25.【答案点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型16、50【答案解析】由CD是O的直径,弦ABCD,根据垂径定理的即

17、可求得=,又由圆周角定理,可得AOD=50【题目详解】CD是O的直径,弦ABCD,=,BCD=25=,AOD=2BCD=50,故答案为50【答案点睛】本题考查角度的求解,解题的关键是利用垂径定理.17、10或1【答案解析】分水位在圆心下以及圆心上两种情况,画出符合题意的图形进行求解即可得.【题目详解】如图,作半径于C,连接OB,由垂径定理得:=AB=60=30cm,在中,当水位上升到圆心以下时水面宽80cm时,则,水面上升的高度为:;当水位上升到圆心以上时,水面上升的高度为:,综上可得,水面上升的高度为30cm或1cm,故答案为:10或1【答案点睛】本题考查了垂径定理的应用,掌握垂径定理、灵活

18、运用分类讨论的思想是解题的关键三、解答题(共7小题,满分69分)18、热气球离地面的高度约为1米【答案解析】作ADBC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可【题目详解】解:作ADBC交CB的延长线于D,设AD为x,由题意得,ABD=45,ACD=35,在RtADB中,ABD=45,DB=x,在RtADC中,ACD=35,tanACD= , = ,解得,x1答:热气球离地面的高度约为1米【答案点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形19、(1)抽样调查;12;3;(

19、2)60;(3)【答案解析】测试卷分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解测试卷解析:(1)抽样调查,所调查的4个班征集到作品数为:5=12件,B作品的件数为:12252=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=124=3(件),所以,估计全年级征集到参展作品:314=42(

20、件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)=,即恰好抽中一男一女的概率是考点:1条形统计图;2用样本估计总体;3扇形统计图;4列表法与树状图法;5图表型20、(1);(2);(3)P1(3,-3),P2(,3),P3(,3)【答案解析】(1)将的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式;(2)根据的坐标,易求得直线的解析式由于都是定值,则 的面积不变,若四边形面积最大,则的面积最大;过点作轴交于,则 可得到当面积有最大值时,四边形的面积最大值;(3)本题应分情况讨论:过作轴的平行线,与抛物线的交点符合点的要求,此时

21、的纵坐标相同,代入抛物线的解析式中即可求出点坐标;将平移,令点落在轴(即点)、点落在抛物线(即点)上;可根据平行四边形的性质,得出点纵坐标(纵坐标的绝对值相等),代入抛物线的解析式中即可求得点坐标【题目详解】解:(1)把代入,可以求得 (2)过点作轴分别交线段和轴于点,在中,令,得 设直线的解析式为 可求得直线的解析式为: S四边形ABCD 设 当时,有最大值 此时四边形ABCD面积有最大值 (3)如图所示,如图:过点C作CP1x轴交抛物线于点P1,过点P1作P1E1BC交x轴于点E1,此时四边形BP1CE1为平行四边形,C(0,-3)设P1(x,-3)x2-x-3=-3,解得x1=0,x2=

22、3,P1(3,-3);平移直线BC交x轴于点E,交x轴上方的抛物线于点P,当BC=PE时,四边形BCEP为平行四边形,C(0,-3)设P(x,3),x2-x-3=3,x2-3x-8=0解得x=或x=,此时存在点P2(,3)和P3(,3),综上所述存在3个点符合题意,坐标分别是P1(3,-3),P2(,3),P3(,3)【答案点睛】此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大21、,;存在,;或;当时,.【答案解析】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M

23、坐标;(3)先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值【题目详解】解:(1)将B(4,0)代入,解得,m=4,二次函数解析式为,令x=0,得y=4,C(0,4);(2)存在,理由:B(4,0),C(0,4),直线BC解析式为y=x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,MBC面积最大,=14b=0,b=4,M(2,6);(3)如图,点P在抛物线上,设P(m,),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,B(4,0),C(0,4),线段BC的垂直平分线的解析

24、式为y=x,m=,m=,P(,)或P(,);如图,设点P(t,),过点P作y轴的平行线l,过点C作l的垂线,点D在直线BC上,D(t,t+4),PD=(t+4)=,BE+CF=4,S四边形PBQC=2SPDC=2(SPCD+SBD)=2(PDCF+PDBE)=4PD=0t4,当t=2时,S四边形PBQC最大=1考点:二次函数综合题;二次函数的最值;最值问题;分类讨论;压轴题22、(1)详见解析;(2)详见解析;(3)详见解析.【答案解析】(1)首先根据AB=BC,BE平分ABC,得到BEAC,CE=AE,进一步得到ACD=DBF,结合CD=BD,即可证明出ADCFDB;(2)由ADCFDB得到AC=BF,结合CE=AE,即可证明出结论;(3)由点H是BC边的中点,得到GH垂直平分BC,即GC=GB,由DBF=GBC=GCB=ECF,得ECO=45,结合BEAC,即可判断出ECG的形状.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论