




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 第 页数学分析第五版知识点总结数学分析第五版知识点总结11、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。3、函数零点的求法:求函数的零点:1代数法求方程的实数根;2几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。4、二次函数的零点:二次函数。10,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。2=0,方程有两相等实根二重根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。30,
2、方程无实根,二次函数的图象与轴无交点,二次函数无零点。数学分析第五版知识点总结2高二班级数学必修二知识点总结基本概念公理1:假如一条直线上的两点在一个平面内,那么这条直线上的全部的点都在这个平面内。公理2:假如两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。公理3:过不在同一条直线上的三个点,有且只有一个平面。推论1:经过一条直线和这条直线外一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。推论3:经过两条平行直线,有且只有一个平面。公理4:平行于同一条直线的两条直线相互平行。等角定理:假如一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。高
3、二班级数学知识点空间两条直线只有三种位置关系:平行、相交、异面按是否共面可分为两类:1共面:平行、相交2异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为0,90esp。空间向量法两异面直线间距离:公垂线段有且只有一条esp。空间向量法假设从有无公共点的角度看可分为两类:1有且仅有一个公共点相交直线;2没有公共点平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行直线在平面内有很多个公共点直线和平面相交有且只有一个公共点直
4、线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。空间向量法找平面的法向量规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0角由此得直线和平面所成角的取值范围为0,90最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:假如平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直直线和平面垂直直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面相互垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。直线与平面垂直的判定定理:假如一条直线和一个平面内的两
5、条相交直线都垂直,那么这条直线垂直于这个平面。直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行没有公共点直线和平面平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。高二数学重点知识点梳理简约随机抽样的定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本nN,假如每次抽取时总体内的各个个体被抽
6、到的机会都相等,就把这种抽样方法叫做简约随机抽样。简约随机抽样的特点:1用简约随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为2简约随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;3简约随机抽样方法,表达了抽样的客观性与公正性,是其他更繁复抽样方法的基础。4简约随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样简约抽样常用方法:1抽签法:先将总体中的全部个体共有N个编号号码可从1到N,并把号码写在外形、大小相同的号签上号签可用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行匀称
7、搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时相宜采纳抽签法。2随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,猎取样本号码概率。数学分析第五版知识点总结31、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线7、到已
8、知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一贯线上的三点确定一个圆。10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。12、推论2:圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论:在同圆或等圆中,假
9、如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理:一条弧所对的圆周角等于它所对的圆心角的一半17、推论:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径19、推论:假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、直线L和O相交dr直线L和O相切d=r直线L和O相离dr22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理:圆的切
10、线垂直于经过切点的半径24、推论:经过圆心且垂直于切线的直线必经过切点25、推论:经过切点且垂直于切线的直线必经过圆心26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理:弦切角等于它所夹的弧对的圆周角29、推论:假如两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论:假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例
11、中项33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、假如两个圆相切,那么切点肯定在连心线上35、两圆外离dR+r两圆外切d=R+r两圆相交R-rdR+r(Rr)两圆内切d=R-r(Rr)两圆内含dR-r(Rr)36、定理:相交两圆的连心线垂直平分两圆的公共弦37、定理:把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)180/n40、定理:正n边形的半径和
12、边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pr/2p表示正n边形的周长,r为边心距42、正三角形面积3a2/4a表示边长43、假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=444、弧长计算公式:L=n兀R/18045、扇形面积公式:S扇形=n兀R2/360=LR/2外公切线长=d-(R+r)数学学习中常见问题分析大部分同学在学习中或多或少的都会积累一些问题,这些问题平常我们可能不是很在意,那么到了初二后就会突显出来。首先新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的同学在解答数学题的时候始终不能把握解题技巧,也就是说同学缺乏对待数学的举一反三技能。还有的同学在解答数学题时效率太低,无法再规定的时间内完成解题,对于中学的考试节奏还没方法适应。一些同学还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致同学学不好数学的缘由。正确对待考试首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,由于每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,仔细思索,尽量让自己理出头绪,做完
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- A-LevelFurtherMath2024-2025年度考试试题:矩阵行列式计算与复数级数求解
- 肝胆护理情景模拟
- 2025年小学语文毕业升学考试全真模拟卷(语文知识趣味竞赛)备考策略分享
- 2025年广告设计师专业知识考核试卷:平面广告设计原理试题
- 高频考点2025年考研中国古代文论核心100题试卷(含名词解释)
- 贵州省黔西一中2011届高三上学期第三次月考试题(物理)
- 2025年学校教职工党支部建设实施办法:强化党员教育管理提高党员素质
- 【《污水处理厂的储泥池、污泥脱水间及高程的计算设计综述》2200字】
- 【《光明乳业基于近年数据的财务比率研究》5700字】
- 电路分析能力提升:宜昌市夷陵区2024-2025学年高二物理期中考试
- 交通事故自救、互救基本常识(新版)
- 环保管家服务投标方案(技术标)
- 桩顶地系梁专项施工方案
- 电气工程概论-肖登明
- 民间个人借款还清证明范本
- 胶粘剂制造业行业营销方案
- 【江淮汽车公司财务现状及其盈利能力问题分析(10000字论文)】
- Sibelius使用教程教材说明
- 柔力球-华中师范大学中国大学mooc课后章节答案期末考试题库2023年
- 学会宽容快乐生活主题班会课件
- ASME-B31.3-2008-工艺管道壁厚计算
评论
0/150
提交评论