版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,则的值分别为 ( )A18,B36, C36,D18,2若对任意的实数k,直线y-2k(x1)恒经过定点M,则M的坐标是A(1,2)B(1,)C(,2)D()3袋中装有完全相同的5个小球,其中有红色小球3个,黄色小球2个,如果不放回地依次摸出2个小球,则在第一次摸出红球的条件下,第二次摸出红球的概率是( )A310 B35 C14随机变量服从二项分布,且,则等于( )ABCD5如果点位于第三象限,那么角所在象限是( )A第一象限B第二象限C第三象限D第四象限6 “”是“”的(
3、 )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件7在等差数列中,且,则的最大值等于( )A3B4C6D98设,且,则的最小值为( )AB9C10D09已知命题p:|x1|2,命题q:xZ,若“p且q”与“非q”同时为假命题,则满足条件的x为( )Ax|x3或x1,xZ Bx|1x3, xZC0,1,2 D1,0,1,2,310将点的直角坐标(2,2)化成极坐标得( )A(4,)B(4,)C(4,)D(4,)11设为两个随机事件,给出以下命题:(1)若为互斥事件,且,则;(2)若,则为相互独立事件;(3)若,则为相互独立事件;(4)若,则为相互独立事件;(5)若,则为相互独立
4、事件;其中正确命题的个数为( )A1B2C3D412已知函数f(x)=lnx+ln(a-x)的图象关于直线A0B1ClnaD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,在平面四边形中,为正三角形,则面积的最大值为_14在正三棱锥中,记二面角,的平面角依次为,则_15函数在区间的最大值为_16在中,内角,满足,且,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)保险公司统计的资料表明:居民住宅距最近消防站的距离 (单位:千米)和火灾所造成的损失数额 (单位:千元)有如下的统计资料:距消防站的距离 (千米)火灾损失数额 (千元)(1)请用相
5、关系数 (精确到)说明与之间具有线性相关关系;(2)求关于的线性回归方程(精确到);(3)若发生火灾的某居民区距最近的消防站千米,请评估一下火灾损失(精确到).参考数据: 参考公式: 回归直线方程为,其中18(12分)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,分组的频率分布直方图如图所示根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布估计
6、该市居民月平均用电量介于度之间的概率;利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望19(12分)已知函数是上的奇函数(为常数),.(1)求实数的值;(2)若对任意,总存在,使得成立,求实数的取值范围;(3)若不等式成立,求证实数的取值范围.20(12分)在二项式的展开式中,前三项系数的绝对值成等差数列.(1)求展开式中二项式系数最大的项;(2)求展开式中所有有理项的系数之和.21(12分)(1)已知,求复数;(2)已知复数满足为纯虚数,且,求复数22(10分)4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生
7、课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数,求的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由B(n,p),E12,D4,知np12,np(1p)4,由此能求出n和p【详解】E12,D4,np12,np(1p)4,n18,p故选A【点睛】本题考
8、查离散型随机变量的期望和方差,解题时要注意二项分布的性质和应用2、C【解析】对任意的实数,直线恒经过定点令参数的系数等于零,得点的坐标为故选C点睛:含参直线恒过定点的求法:(1)分离参数法,把含有的参数的直线方程改写成,解方程组,便可得到定点坐标;(2)特殊值法,把参数赋两个特殊的值,联立方程组,即可得到定点坐标.3、C【解析】试题分析:因为第一次摸到红球的概率为35,则第一次摸出红球且第二次摸出红球的概率为35考点:1、条件概率;2、独立事件4、B【解析】因为,所以,解得.即等于.故选B.5、B【解析】由二倍角的正弦公式以及已知条件得出和的符号,由此得出角所在的象限.【详解】由于点位于第三象
9、限,则,得,因此,角为第二象限角,故选B.【点睛】本题考查角所在象限的判断,解题的关键要结合已知条件判断出角的三角函数值的符号,利用“一全二正弦,三切四余弦”的规律判断出角所在的象限,考查推理能力,属于中等题.6、B【解析】,“”是“”的充分不必要条件故选:7、B【解析】先由等差数列的求和公式,得到,再由基本不等式,即可求出结果.【详解】因为在等差数列中,所以,即,又,所以,当且仅当时,的最大值为4.故选B。【点睛】本题主要考查基本不等式求积的最大值,熟记等差数列的求和公式以及基本不等式即可,属于常考题型.8、B【解析】利用柯西不等式得出最小值【详解】(x2)(y2)(x)21当且仅当xy即x
10、y= 时取等号故选:B【点睛】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题9、C【解析】试题分析:由题意知q真,p假,|x1|11x3且xZx0,1,1选C考点:命题否定10、A【解析】由条件求得、的值,可得的值,从而可得极坐标.【详解】点的直角坐标,可取直角坐标化成极坐标为故选A.【点睛】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题注意运用、(由所在象限确定).11、D【解析】根据互斥事件的加法公式,易判断(1)的正误;根据相互对立事件的概率和为1 ,结合相互独立事件的概率满足,可判断(2)、(3)、(4)、(5 )的正误.【详解】若为互斥事件,且, 则 ,故(
11、1)正确;若 则由相互独立事件乘法公式知为相互独立事件,故(2)正确;若,则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(3)正确;若 ,当为相互独立事件时, 故(4)错误;若 则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(5)正确.故选D.【点睛】本题考查互斥事件、对立事件和独立事件的概率,属于基础题.12、A【解析】利用对称列方程解得a,从而求出f(1)。【详解】由题意得x1+xf所以f(x)=lnx+【点睛】本题主要考查了函数对称轴的问题,即在函数上任意两点x1,x2关于直线二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:在
12、中设运用余弦定理,表示出,利用正弦定理可得,进而用三角形面积公式表示出,利用三角函数的有界性可得结果.详解:在中,由余弦定理可知,正三角形,由正弦定理得:,为锐角, ,当时,最大值为,故答案为.点睛:本题考查正弦定理与余弦定理的应用以及辅助角公式的应用,属于难题. 对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.14、1【解析】作平面ABC,连接CO延长交AB于点D,连接可得D为AB的中点,于是二面角的平面角为作,垂足为E点,连接BE,根据,可得可得为的平面角,利用
13、余弦定理即可得出【详解】如图所示,作平面ABC,连接CO延长交AB于点D,连接PD则D为AB的中点,二面角的平面角为,作,垂足为E点,连接BE,为的平面角,在中,故答案为1【点睛】本题主要考查了正三棱锥的性质、正三角形的性质、余弦定理、勾股定理、二面角、三角形全等,属于难题15、【解析】利用导数,判断函数的单调性,可得结果.【详解】由,所以当时,所以则在单调递增,所以故答案为:【点睛】本题考查函数在定区间的最值,关键在于利用导数判断函数的单调性,属基础题.16、【解析】利用二倍角公式得出,再利用正弦定理转化,后用余弦定理求得,再利用正弦定理即可【详解】由得, ,根据正弦定理可得,根据余弦定理【
14、点睛】本题考查解三角形中正弦定理进行边角转化,余弦定理求角,以及三角形中两角和正弦与第三角正弦的关系三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)(3)火灾损失大约为千元【解析】分析:利用相关系数计算公式,即可求得结果由题中数据计算出,然后计算出回归方程的系数,即可得回归方程把代入即可评估一下火灾的损失详解:(1)所以与之间具有很强的线性相关关系;(2) ,与的线性回归方程为(3)当时,所以火灾损失大约为千元点睛:本题是一道考查线性回归方程的题目,掌握求解线性回归方程的方法及其计算公式是解答本题的关键18、 (1)225.6.(2) (i) ;(ii)
15、分布列见解析;.【解析】分析:(1)由矩形面积和为列方程可得,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和,即可得到该市每户居民平均用电量的值;(2) (i)由正态分布的对称性可得结果;(ii)因为,则,从而可得分布列,利用二项分布的期望公式可得结果.详解:(1)由得(2)(i)(ii)因为,.所以的分布列为0123所以点睛:“求期望”,一般利用离散型随机变量的数学期望的定义求期望对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得因此,应熟记常见的典型分布的期望公式,可加快解题速度19、(1).(2)
16、.(3)【解析】因为函数是R上的奇函数,令可求a;对任意,总存在,使得成立,故只需满足值域是的值域的子集;由不等式得,构造利用单调性可求解正实数t的取值范围【详解】(1)因为为上的奇函数,所以,即,解得得,当时,由得为奇函数,所以.(2)因为,且在上是减函数,在上为增函数所以在上的取值集合为.由,得是减函数,所以在上是减函数,所以在上的取值集合为.由“任意,总存在,使得成立”在上的取值集合是在上的取值集合的子集,即.则有,且,解得:.即实数的取值范围是.(3)记,则,所以是减函数,不等式等价于,即,因为是减函数,所以,解得,所以实数的取值范围是.【点睛】本题主要考查了函数最值的求法,通过子集的
17、关系求参数的范围,构造函数求参数范围,属于难题20、(1)(2)-【解析】(1)由二项式定理展开式中的通项公式求出前三项,由前三项系数的绝对值成等差数列列方程即可求得,问题得解(2)由,对赋值,使得的指数为正数即可求得所有理项,问题得解【详解】(1)由二项式定理得展开式中第项为,所以前三项的系数的绝对值分别为1,由题意可得,整理得,解得或(舍去),则展开式中二项式系数最大的项是第五项,(2)因为,若该项为有理项,则是整数,又因为,所以或或,所以所有有理项的系数之和为【点睛】本题主要考查了二项式定理及其展开式的通项公式,考查分析能力,转化能力及计算能力,属于基础题21、(1);(2)或或.【解析】(1)设复数,根据复数的运算法则和复数相等得出关于、的方程组,解出这两个未知数,即可得出复数;(2)设复数,根据为纯虚数和列出关于、的方程组,解出这两个未知数,可得出复数.【详解】(1)设复数,由,得,根据复数相等得,解得,因此,;(2)设复数,则,由题意可得,.,得,所以有,解得或.因此,或或.【点睛】本题考查复数的求解,常将复数设为一般形式,根据复数的相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环保项目贷款委托合同模板3篇
- 2025年度应急预案编制与演练服务合同范本2篇
- 2025版个人合伙文化产业合作合同样本3篇
- 2024微电影演员试镜及试戏邀请与报酬合同3篇
- 二零二五年度EPS保温隔热系统安装与后期维护服务合同3篇
- 2025版智慧城市建设保证担保借款合同范本3篇
- 2025版高速公路路段清扫与养护承包合同3篇
- 2024年物业服务合同纠纷处理办法
- 2024年版建筑项目分包协议样本版B版
- 2025版KTV知识产权保护与侵权处理合同3篇
- 小学体育足球课教育课件
- 《世界经济学课件》课件
- 设备的使用和维护管理制度模版(3篇)
- 安全生产知识负责人复习题库(附参考答案)
- 《玉米种植技术》课件
- 2023年聊城市人民医院招聘备案制工作人员笔试真题
- 2024年广东省公务员录用考试《行测》真题及解析
- 辅导员年度述职报告
- 收费站微笑服务培训
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 雨的形成课件教学课件
评论
0/150
提交评论