版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设随机变量,随机变量,若,则( )ABCD2执行如图所示的程序框图,则程序输出的结果为( )
2、ABCD3如图,网格纸上小正方形的边长为,粗线条画出的是一个三棱锥的三视图,则该三棱锥的体积是( )ABCD4下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则 (3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A1B2C3D45已知复数,若是纯虚数,则实数等于( )A2B1C0或1D-16将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是( )A150B210C240D3007下列三个数:,大小顺序正确的是( )ABCD8设集合A=x1,x2,xA60B100C120D1309设函数
3、的定义域,函数y=ln(1-x)的定义域为,则A(1,2)B(1,2C(-2,1)D-2,1)10已知双曲线 的右焦点为F2,若C的左支上存在点M,使得直线bxay0是线段MF2的垂直平分线,则C的离心率为()AB2CD511已知,则( )A36B40C45D5212某公司从甲、乙、丙、丁四名员工中安排了一名员工出国研学.有人询问了四名员工,甲说:“好像是乙或丙去了.”乙说:“甲、丙都没去.”丙说:“是丁去了.”丁说:“丙说的不对.”若四名员工中只有一个人说的对,则出国研学的员工是( )A甲B乙C丙D丁二、填空题:本题共4小题,每小题5分,共20分。13执行如图所示的程序框图则输出的实数m的值
4、为_14已知,N*,满足,则所有数对的个数是_15不等式的解集是_.16若复数()为纯虚数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为,随机抽取4个投保人,设其中活过65岁的人数为,保险公司支出给这4人的总金额为万元(参考数据:)(1)指出X服从的分布并写出与的关系;(2)求.(结果保留3位小数)18(12分)设函数.(1)解不等式;(2)若关于的不等式解集是空集,求实数
5、的取值范围.19(12分)设为实数,函数,()若求的极小值.()求证:当且时,.20(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余
6、额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.21(12分)在直角坐标系中,曲线的参数方程为(为参数,).以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.()求曲线的普通方程及直线的直角坐标方程;()若曲线
7、上恰好存在两个点到直线的距离为,求实数的取值范围.22(10分)某小组有10名同学,他们的情况构成如下表,表中有部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为中文专业”的概率为. 专业性别中文英语数学体育男11女1111现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同)(1)求的值;(2)设为选出的3名同学中“女生”的人数,求随机变量的分布列及其数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:随机变量,解得,故选C考点:1二项分布;2n次独立重复试验
8、方差2、C【解析】依次运行如图给出的程序,可得;,所以输出的的值构成周期为4的数列因此当时,故程序输出的结果为选C3、B【解析】由三视图得到该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1再由棱锥体积公式求解【详解】由三视图还原原几何体,如图所示,该几何体为三棱锥,底面是等腰直角三角形,且,三棱锥的高为1该三棱锥的体积故选B【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中
9、线面的位置关系和数量关系,利用相应公式求解4、C【解析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以 是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时
10、,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题5、B【解析】分析:由复数是纯虚数,得实部等于0且虚部不等于0.求解即可得到答案.详解:复数是纯虚数,解得.故选B.点睛:此题考查复数的概念,思路:纯虚数是实部为0.虚部不为0的复数.6、A【解析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53A33=60种分法,分成2、2、1
11、时,根据分组公式90种分法,所以共有60+90=150种分法,故选A点睛:一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数7、A【解析】将与化成相同的真数,然后利用换底公式与对数函数的单调性比较的大小,然后再利用中间量比较的大小,从而得出三者的大小【详解】解:因为,且,所以,因为,所以故选A【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题8、D【解析】根据题意,xi中取0的个数为2,3,4.根据这个情况分类计算再相加得到答案【详解】集
12、合A中满足条件“1xxi中取0的个数为则集合个数为:C5故答案选D【点睛】本题考查了排列组合的应用,根据xi中取0的个数分类是解题的关键9、D【解析】由得,由得,故,选D.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.10、C【解析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,可得,即为,即,可得故选C【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题11、A【解
13、析】利用二项式展开式的通项公式,分别计算和,相加得到答案.【详解】故答案选A【点睛】本题考查了二项式的计算,意在考查学生的计算能力.12、A【解析】逐一假设成立,分析,可推出。【详解】若乙去,则甲、乙、丁都说的对,不符合题意;若丙去,则甲、丁都说的对,不符合题意;若丁去,则乙、丙都说的对,不符合题意;若甲去,则甲、乙、丙都说的不对,丁说的对,符合题意.故选A.【点睛】本题考查合情推理,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】先要通读程序框图,看到程序中有循环结构,然后代入初值,看是否进入循环体,是就执行循环体,写清每次循环的结果;不是就退出循环,看清要输出的
14、是何值【详解】模拟执行程序,可得, 满足条件, 满足条件, 满足条件, 满足条件, 满足条件, 满足条件, 满足条件, 满足条件, 满足条件, 满足条件, 不满足条件,退出循环,输出m的值为1故答案为:1【点睛】本题考查程序框图要掌握常见的当型、直到型循环结构;以及会判断条件结构,并得到条件结构的结果;在已知框图的条件下,可以得到框图的结果14、4;【解析】因为,即,所以,因为已知,N*,所以,继而讨论可得结果【详解】因为,即,所以,因为已知,N*,所以,又,故有以下情况:若,得:,若得:,若得:,若得:,即的值共4个【点睛】本题考查数论中的计数问题,是创新型问题,对综合能力的考查要求较高15
15、、【解析】直接去掉绝对值即可得解.【详解】由去绝对值可得即,故不等式的解集是.【点睛】本题考查了绝对值不等式的解法,属于基础题.16、0【解析】试题分析:由题意得,复数为纯虚数,则,解得或,当时,(舍去),所以.考点:复数的概念.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1) ; ;(2) 【解析】(1)先由题意可得,服从二项分布;再由题意得到,化简即可得出结果;(2)先由,根据(1)的结果,得到,进而可得,即可求出结果.【详解】(1)由题意得,服从二项分布,即,因为4个投保人中,活过65岁的人数为,则没活过65岁的人数为,因此,即.(2)由得,所以,所以 = .
16、所以约为.【点睛】本题主要考查二项分布的问题,熟记二项分布的概率计算公式即可,属于常考题型.18、(1);(2)或【解析】分析:(1)利用零点讨论法解不等式。(2)先求,再解不等式得解.详解:(1)由,得或或,解得,即解集为.(2)的解集为空集,而 ,即或.点睛:(1)本题主要考查绝对值不等式的解法,考查绝对值的三角不等式和不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)绝对值三角不等式常用来求最值.19、();()详见解析.【解析】()将代入,求导,得出极小值点,代入即可求出答案。()令,则,即只需说明当,在内单调递增即可。【详解】解:(I)由,知,令,得,则当时,
17、 ,当时,故在处取得极小值.极小值为.(II)证明:设,于是,由(I)知,对于,都有,故在内单调递增. 于是,当时, 对任意的,都有,而,从而对,都有,即故【点睛】本题考查利用函数单调性证明不等式,属于中档题。20、(1);(2)680元.【解析】(1)根据题意,列方程,然后求解即可(2)根据题意,计算出10000元使用“余额宝”的利息为(元)和10000元使用“财富通”的利息为(元),得到所有可能的取值为560(元),700(元),840(元),然后根据所有可能的取值,计算出相应的概率,并列出的分布列表,然后求解数学期望即可【详解】(1)据题意,得,所以.(2)据,得这被抽取的7人中使用“余
18、额宝”的有4人,使用“财富通”的有3人.10000元使用“余额宝”的利息为(元).10000元使用“财富通”的利息为(元).所有可能的取值为560(元),700(元),840(元).,.的分布列为560700840所以(元).【点睛】本题考查频数分布表以及分布列和数学期望问题,属于基础题21、():,:;()【解析】(1)利用消去参数,得到曲线的普通方程,再由,化直线为直角坐标方程;(2)与直线的距离为的点在与平行且距离为的两平行直线上,依题意只有一条平行线与圆相交,另一条平行线与圆相离,利用圆心到直线的距离与半径关系,即可求解.【详解】()由曲线的参数方程(为参数,)消去参数,可得曲线的普通方程.,代入,得直线的直角坐标方程为.()由()知,直线的直角坐标方程为,曲线的直角坐标方程为,曲线表示以原点为圆心,以为半径的圆,且原点到直线的距离为.所以要使曲线上恰好存在两个点到直线的距离为,则须,即.所以实数的取值范围是.【点睛】本题考查参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 常见的股权转让协议样本
- 标准供货合同格式指南
- 2024年度资产处置债务协议书
- 工程地质勘察合同样本
- 标准二手房合同范本
- 房产项目转让协议范本
- 包含子女抚养条款的离婚协议书
- 食品报废处理合作协议书
- 油漆代理销售合同
- 2024年离婚协议书范本参考
- “数字城市”公共智慧底座项目解决方案
- 二年级数学上册教案 4、除法的初步认识 苏教版
- 国风漫画人物课程设计
- 2024至2030年中国硬质合金行业现状调查及前景策略分析报告
- 人教版(2024)八年级上册物理第2章《声现象》单元测试卷(含答案解析)
- 2024国家应对气候变化战略研究和国际合作中心招聘历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 2023-2024学年北京市朝阳区陈经纶中学分校八年级(上)期中数学试卷【含解析】
- 2024年高中物理 第二章 第2节 匀变速直线运动的速度与时间的关系教案 新人教版必修1
- 2023智能财税赛项-赛题样题(高职组)
- 中学历史探究教学调查问卷及分析报告
- 电阻的实验报告
评论
0/150
提交评论