版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线方程为,它的一条渐近线与圆相切,则双曲线的离心率为( )ABCD2己知O为坐标原点,设F1、F2 分别是双曲线x24-y2=1的左、右焦点,P为双曲线左支上任一
2、点,过点A12B1C2D3已知双曲线C:的离心率e=2,圆A的圆心是抛物线的焦点,且截双曲线C的渐近线所得的弦长为2,则圆A的方程为ABCD4在边长为2的菱形中,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的内切球的表面积为( )ABCD5某教师准备对一天的五节课进行课程安排,要求语文、数学、外语、物理、化学每科分别要排一节课,则数学不排第一节,物理不排最后一节的情况下,化学排第四节的概率是( )ABCD6下列命题为真命题的个数是( ),是无理数; 命题“R,”的否定是“xR,13x”;命题“若,则”的逆否命题为真命题; 。A1B2C3D47复数(为虚数单位)的共轭复数是( )ABCD
3、8把函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变,再把图象向右平移个单位,这是对应于这个图象的解析式为( )ABCD9设数列的前项和为,若,且,则( )A2019BC2020D10在极坐标系中,与关于极轴对称的点是( )ABCD11若复数满足,则在复平面内,对应的点位于( )A第一象限B第二象限C第三象限D第四象限12甲、乙两人进行三打二胜制乒乓球赛,已知每局甲取胜的概率为0.6,乙取胜的概率为0.4,那么最终甲胜乙的概率为A0.36B0.216C0.432D0.648二、填空题:本题共4小题,每小题5分,共20分。13已知球的体积是V,则此球的内接正方体的体积为_14在极坐标
4、系中,点(2,6)到直线sin=2的距离等于15圆柱的高为1,侧面展开图中母线与对角线的夹角为60,则此圆柱侧面积是_16已知点,若直线上存在点,使得,则称该直线为“型直线”.给出下列直线:(1);(2);(3);(4)其中所有是“型直线”的序号为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在中,角的对边分别为,且.(1)求;(2)若,求的面积.18(12分)设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.()求椭圆的方程;()设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.19(12分
5、)某校高二理科1班共有50名学生参加学业水平模拟考试,成绩(单位:分,满分100分)大于或等于90分的为优秀,其中语文成绩近似服从正态分布,数学成绩的频率分布直方图如图.(1)这50名学生中本次考试语文、数学成绩优秀的大约各有多少人?(2)如果语文和数学两科成绩都优秀的共有4人,从语文优秀或数学优秀的这些同学中随机抽取3人,设3人中两科都优秀的有X人,求X的分布列和数学期望;(3)根据(1)(2)的数据,是否有99%以上的把握认为语文成绩优秀的同学,数学成绩也优秀?语文优秀语文不优秀合计数学优秀数学不优秀合计附:若,则,; 0.10.050.0250.0100.0050.0012.7063.8
6、415.0246.6357.87910.82820(12分)如图,四棱锥中,为正三角形,为正方形,平面平面,、分别为、中点.(1)证明:平面;(2)求直线与平面所成角的正弦值.21(12分)已知数列,的前项和为.(1)计算的值,根据计算结果,猜想的表达式;(2)用数学归纳法证明(1)中猜想的表达式.22(10分)进入春天,大气流动性变好,空气质量随之提高,自然风光越来越美,自驾游乡村游也就越来越热某旅游景区试图探究车流量与景区接待能力的相关性,确保服务质量和游客安全,以便于确定是否对进入景区车辆实施限行为此,该景区采集到过去一周内某时段车流量与接待能力指数的数据如表:时间周一周二周三周四周五周
7、六周日车流量(x千辆)1099.510.51188.5接待能力指数y78767779807375(I)根据表中周一到周五的数据,求y关于x的线性回归方程()若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2,则认为该线性回归方程是可靠的请根据周六和周日数据,判定所得的线性回归方程是否可靠?附参考公式及参考数据:线性回归方程,其中;参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】方法一:双曲线的渐近线方程为,则,圆的方程,圆心为,所以,化简可得,则离心率.方法二:因为焦点到渐近线的距离为,则有平行线的对应成
8、比例可得知,即则离心率为. 选A.2、C【解析】根据中位线性质得到OH=12【详解】如图所示:延长F1H交PFF1PF2的平分线为PA在F1F2B中,O是F1OH=故答案选C【点睛】本题考查了双曲线的性质,利用中位线性质将OH=123、C【解析】运用离心率公式和基本量的关系可得的关系,即可得到双曲线的渐近线的方程,求得抛物线的焦点坐标,可得点的坐标,求得到渐近线的距离,结合弦长公式,可得半径为,进而得到所求圆的方程.【详解】由题意,即,可得双曲线的渐近线方程为,即为,圆的圆心是抛物线的焦点,可得,圆截双曲线C的渐近线所得的弦长为2,由圆心到直线的距离为,可得,解得,可圆的方程为,故选C.【点睛
9、】本题主要考查了双曲线的方程和几何性质的应用,其中解答中涉及到双曲线的离心率的求法,圆的标准方程的求法,以及运用点到直线的距离公式和圆的弦长公式等知识点的综合应用,着重考查了推理与运算能力.4、C【解析】作出图形,利用菱形对角线相互垂直的性质得出DNAC,BNAC,可得出二面角BACD的平面角为BND,再利用余弦定理求出BD,可知三棱锥BACD为正四面体,可得出内切球的半径R,再利用球体的表面积公式可得出答案【详解】如下图所示,易知ABC和ACD都是等边三角形,取AC的中点N,则DNAC,BNAC所以,BND是二面角BACD的平面角,过点B作BODN交DN于点O,可得BO平面ACD因为在BDN
10、中,所以,BD1BN1+DN11BNDNcosBND,则BD1故三棱锥ABCD为正四面体,则其内切球半径为正四面体高的,又正四面体的高为棱长的,故因此,三棱锥ABCD的内切球的表面积为故选:C【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题5、C【解析】先求出事件:数学不排第一节,物理不排最后一节的概率,设事件:化学排第四节,计算事件的概率,然后由公式计算即得【详解】设事件:数学不排第一节,物理不排最后一节. 设事件:化学排第四节. ,故满足条件的概率是.故选:C【点睛】本小题主要考查条件概率计算,考
11、查古典概型概率计算,考查实际问题的排列组合计算,属于中档题.6、B【解析】由中,比如当时,就不成立;中,根据存在性命题与全称命题的关系,即可判定;中,根据四种命题的关系,即可判定;中,根据导数的运算,即可判定,得到答案.【详解】对于中,比如当时,就不成立,所以不正确;对于中,命题“”的否定是“”,所以正确;中,命题“若,则”为真命题,其逆否命题为真命题,所以正确;对于中,根据导数的计算,可得,所以错误;故选B.【点睛】本题主要考查了命题真假的判定,其中解答中熟记全称命题与存在性命题的关系,以及四种命题的关系,导数的运算是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】根据复数除
12、法运算,化简复数,再根据共轭复数概念得结果【详解】,故的共轭复数.故选B.【点睛】本题考查复数除法运算以及共轭复数概念,考查基本分析求解能力,属基础题.8、A【解析】试题分析:函数的图象上所有点的横坐标都缩小到原来的一半,纵坐标保持不变得到,再把图象向右平移个单位,得到.考点:三角函数图像变换.9、D【解析】用,代入已知等式,得,可以变形为:,说明是等差数列,故可以求出等差数列的通项公式,最后求出的值.【详解】因为,所以,所以数列是以为公差的等差数列,所以等差数列的通项公式为,故本题选D.【点睛】本题考查了公式的应用,考查了等差数列的判定义、以及等差数列的通项公式.10、B【解析】直接根据极轴
13、对称性质得到答案.【详解】在极坐标系中,与关于极轴对称的点是.故选:.【点睛】本题考查了极轴的对称问题,属于简单题.11、A【解析】由题先解出,再利用来判断位置【详解】,在复平面对应的点为,即在第一象限,故选A【点睛】本题考查复数的除法,复数的概念及几何意义,是基础题.12、D【解析】分析:由题意,要使得甲胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式,即可求解答案.详解:由题意,每局中甲取胜的概率为,乙取胜的概率为,则使得甲胜乙,则包含着甲胜前两局或甲胜第一、三局或甲胜二、三局三种情况,根据互斥时间的概率和相互独立了的计算的公式得:
14、,故选D.点睛:本题主要考查了相互独立事件同时发生的概率和互斥事件的概率的计算,其中根据题意得出甲取胜的三种情况是解答本题的关键,着重考查了分析问题和解答问题的能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设球的半径为R,球内接正方体的棱长为a,根据题意知球内接正方体的体对角线是球的直径,得出a与R的关系,再计算正方体的体积【详解】设球的半径为R,球内接正方体的棱长为a,则球的体积是,又球的内接正方体的体对角线是球的直径,即,;正方体的体积为故答案为【点睛】本题主要考查了球与其内接正方体的关系,属于容易题题14、1【解析】试题分析:在极坐标系中,点(2,6)对应直角坐标系
15、中坐标(3考点:极坐标化直角坐标15、【解析】根据圆柱结构特征可知侧面展开图为矩形,利用正切值求得矩形的长,从而可得侧面积.【详解】圆柱侧面展开图为矩形,且矩形的宽为矩形的长为: 圆柱侧面积:本题正确结果:【点睛】本题考查圆柱侧面积的相关计算,属于基础题.16、 (1)(3)(4)【解析】由题可得若则是在以,为焦点,的椭圆上.故“型直线”必与椭圆相交,再判断直线与椭圆是否相交即可.【详解】由题可得若则是在以,为焦点,的椭圆上.故“型直线”需与椭圆相交即可.易得.左右顶点为,上下顶点为对(1),过,满足条件对(2),设椭圆上的点,则到直线的距离,.若,则无解.故椭圆与直线不相交.故直线不满足.对
16、(3), 与椭圆显然相交,故满足.对(4),因为过,故与椭圆相交.故满足.故答案为:(1)(3)(4)【点睛】本题主要考查了椭圆的定义与新定义的问题,判断直线与椭圆的位置关系可设椭圆上的点求点与直线的距离,分析是否可以等于0即可.属于中等题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由正弦定理把已知角的关系转化为边的关系,再由余弦定理求得,从而求得;(2)由(1)及代入可解得,再由求得面积【详解】解:(1)由及正弦定理得:,由余弦定理得:,(2)由,及,得,的面积为.【点睛】本题考查正弦定理和余弦定理,考查三角形面积公式,解题关键是由正弦定
17、理把已知角的关系转化为边的关系18、()()或.【解析】()由题意得到关于a,b,c的方程,解方程可得椭圆方程;()联立直线方程与椭圆方程确定点P的坐标,从而可得OP的斜率,然后利用斜率公式可得MN的斜率表达式,最后利用直线垂直的充分必要条件得到关于斜率的方程,解方程可得直线的斜率.【详解】() 设椭圆的半焦距为,依题意,又,可得,b=2,c=1.所以,椭圆方程为.()由题意,设.设直线的斜率为,又,则直线的方程为,与椭圆方程联立,整理得,可得,代入得,进而直线的斜率,在中,令,得.由题意得,所以直线的斜率为.由,得,化简得,从而.所以,直线的斜率为或.【点睛】本题主要考查椭圆的标准方程和几何
18、性质直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.19、(1)语文成绩优秀的同学有人,数学成绩优秀的同学有人.(2)分布列见解析,;(3)没有以上的把握认为语文成绩优秀的同学,数学成绩也优秀.【解析】(1)语文成绩服从正态分布,根据正态分布的原则可得语文成绩优秀的概型及人数,根据数学成绩的频率分布直方图可以计算数学成绩优秀的概率及人数;(2)语文和数学两科都优秀的有4人,则可算出单科优秀的学生人数,从中随机抽取3人,则3人中两科都优秀的可能为0、1、2、3四种情况,服从超几何分布,利用概率公式分别求出概率,即可写出分布列及数学期望;(3)
19、先完成列联表,利用公式求出卡方的值比较参考数据即可得出结论;【详解】解:(1)因为语文成绩服从正态分布所以语文成绩优秀的概率数学成绩优秀的概率所以语文成绩优秀的同学有人,数学成绩优秀的同学有人.(2)语文数学两科都优秀的有4人,单科优秀的有10人,的所有可能取值为0、1、2、3,所以的分布列为:(3)列联表:语文优秀语文不优秀合计数学优秀数学不优秀合计所以没有以上的把握认为语文成绩优秀的同学,数学成绩也优秀.【点睛】本题考查正态分布的概率计算,频率分布直方图的应用,离散型随机变量的分布列及期望的计算,独立性检验的应用,属于中档题.20、 (1)见解析;(2).【解析】分析:(1)要证线面平行,只需在面内找一线与已知线平行即可,连接,根据中位线即可得即可求证;(2)求线面角则可直接建立空间直角坐标系,写出线向量和面的法
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专用烧烤制品买卖协议(2024版)版B版
- 专属2024年度玉米购入协议格式版A版
- 2025年度产业园区厂房租赁合同规范文本8篇
- 2025年度高科技产业园区物业智能化改造服务协议4篇
- 专业维修与装饰工程2024协议格式版B版
- 2025年度企业搬迁拆迁补偿承包合同范本4篇
- 个人间借贷协议规范文本2024年款版A版
- 2025年度影视基地场地租赁及拍摄服务合同4篇
- 2025年度教育机构场地租赁与教育培训合同2篇
- 二零二四年LED产品OEM生产与技术支持合同
- 冬春季呼吸道传染病防控
- 中介费合同范本(2025年)
- 《kdigo专家共识:补体系统在肾脏疾病的作用》解读
- 生产调度员岗位面试题及答案(经典版)
- 【物 理】2024-2025学年八年级上册物理寒假作业人教版
- 交通运输安全生产管理规范
- 2025春夏运动户外行业趋势白皮书
- 电力行业 电力施工组织设计(施工方案)
- 《法制宣传之盗窃罪》课件
- 通信工程单位劳动合同
- 查对制度 课件
评论
0/150
提交评论