版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。14名老师、2位家长以及1个学生站在一排合影,要求2位家长不能站在一起,学生必须和4名老师中的
2、王老师站在一起,则共有()种不同的站法A1920B960C1440D7202为了弘扬我国优秀传统文化,某中学广播站在春节、元宵节、清明节、端午节、中秋节五个中国传统节日中,随机选取两个节日来讲解其文化内涵,那么春节和端午节恰有一个被选中的概率是( )ABCD3己知某产品的销售额y与广告费用x之间的关系如下表:若求得其线性回归方程为,其中,则预计当广告费用为6万元时的销售额是()A42万元B45万元C48万元D51万元4甲、乙独立地解决同一数学问题,甲解决这个问题的概率是18,乙解决这个问题的概率是16,那么其中至少有1人解决这个问题的概率是( )A148B152C18D1925已知双曲线与椭圆
3、:有共同的焦点,它们的离心率之和为,则双曲线的标准方程为( )ABCD 6已知向量、满足,且,则、夹角为( )ABCD7将函数图象上的点向右平移个单位长度得到点,若位于函数的图象上,则( )A, 的最小值为B, 的最小值为C, 的最小值为D, 的最小值为8针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的12,男生喜欢抖音的人数占男生人数的16,女生喜欢抖音的人数占女生人数23,若有99%参考公式:KP0.100.050.0250.0100.0050.001k2.7063.8415.0246.6357.87910.828A12人B18人
4、C24人D30人9若正数满足,则当取最小值时,的值为 ( )ABCD10设,为两条不同的直线,为两个不同的平面,则( )A若,则B若,则C若,则D若,则11在等差数列中,则为( )A2B3C4D512若函数在(0,2)内单调递减,则实数的取值范围为 ( )A3B=3C3D0 3二、填空题:本题共4小题,每小题5分,共20分。13三棱锥中,平面,则三棱锥外接球的体积为_.14若直线是曲线的切线,也是曲线的切线,则 15在平面直角坐标系中,直线的参数方程为(为参数),圆的参数方程是,(为参数),直线与圆交于两个不同的点、,当点在圆上运动时,面积的最大值为_.16在中,角所对的边分别为,已知,且的面
5、积为,则的周长为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数(1)解不等式;(2)若函数的最小值为,且,求的取值范围18(12分)IC芯片堪称“国之重器”其制作流程异常繁琐,制作IC芯片核心部分首先需要制造单晶的晶圆,此过程主要是加入碳,以氧化还原的方式,将氧化硅转换为高纯度的硅.为达到这一高标准要求,研究工作人员曾就是否需采用西门子制程(Siemensprocess)这一工艺技术进行了反复比较,在一次实验中,工作人员对生产出的50片单晶的晶圆进行研究,结果发现使用了该工艺的30片单晶的晶圆中有28片合格,没有使用该工艺的20片
6、单晶的晶圆中有12片合格.(1)请填写22列联表并判断:这次实验是否有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程(Siemensprocess)这一工艺技术有关?使用工艺不使用工艺合格合格不合格合计50(2)在得到单晶的晶圆后,接下来的生产制作还前对单晶的晶圆依次进行金属溅镀,涂布光阻,蚀刻技术,光阻去除这四个环节的精密操作,进而得到多晶的晶圆,生产出来的多晶的晶圆经过严格的质检,确定合格后才能进入下一个流程,如果生产出来的多晶的晶圆在质检中不合格,那么必须依次对前四个环节进行技术检测并对所有的出错环节进行修复才能成为合格品.在实验的初期,由于技术的不成熟,生产制作的多晶的晶圆很
7、难达到理想状态,研究人员根据以往的数据与经验得知在实验生产多晶的晶圆的过程中,前三个环节每个环节生产正常的概率为23,第四个环节生产正常的概率为34,且每个环节是否生产正常是相互独立的.前三个环节每个环节出错需要修复的费用均为20元,第四环节出错需要修复的费用为10元参考公式:K参考数据:P(0.150.100.050.0250.010.0050.001K2.0722.7063.8415.0246.6357.87910.82819(12分)已知,(1)如果函数的单调递减区间为,求函数的解析式;(2)在(1)的条件下,求函数的图象在点处的切线方程;(3)若不等式恒成立,求实数a的取值范围20(1
8、2分)如图(1),等腰梯形,分别是的两个三等分点,若把等腰梯形沿虚线、折起,使得点和点重合,记为点, 如图(2)(1)求证:平面平面;(2)求平面与平面所成锐二面角的余弦值21(12分)某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:男生女生总计购买数学课外辅导书超过本购买数学课外辅导书不超过本总计()根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;()从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.附:,.22(10分)已知函数(1)求函数的单调区间;(2)求函数在区间上
9、的最大值和最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先将学生和王老师捆绑成一个团队,再将团队与另外3个老师进行排列,最后将两位家长插入排好的队中即可得出【详解】完成此事分三步进行:(1)学生和王老师捆绑成一个团队,有种站法;(2)将团队与另外3个老师进行排列,有种站法;(3)将两位家长插入排好的队中,有种站法,根据分步计数原理,所以有种不同的站法,故选B【点睛】本题主要考查分步乘法计数原理、捆绑法以及插空法的应用2、C【解析】分析:先根据组合数确定随机选取两个节日总事件数,再求春节和端午节恰有一个被选中的事
10、件数,最后根据古典概型概率公式求结果.详解:因为五个中国传统节日中,随机选取两个节日共有种,春节和端午节恰有一个被选中的选法有,所以所求概率为选C.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.3、C【解析】由已知求得样本点的中心的坐标,代入线性回归方程求得,则线性回归方程可求,取求得y值即可【详解】,样本点的中心的坐标为,代入
11、,得关于x得线性回归方程为取,可得万元故选:C【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题4、D【解析】11214192,选D项5、C【解析】由椭圆方程求出双曲线的焦点坐标,及椭圆的离心率,结合题意进一步求出双曲线的离心率,从而得到双曲线的实半轴长,再结合隐含条件求得双曲线的虚半轴长得答案【详解】由椭圆,得,则,双曲线与椭圆的焦点坐标为,椭圆的离心率为,则双曲线的离心率为设双曲线的实半轴长为m,则,得,则虚半轴长,双曲线的方程是故选C【点睛】本题考查双曲线方程的求法,考查了椭圆与双曲线的简单性质,是中档题6、C【解析】对等式两边平方,利用平面向量数量积的运算律和定义得出,由此可求
12、出、的夹角.【详解】等式两边平方得,即,又,所以,因此,、夹角为,故选:C.【点睛】本题考查平面向量夹角的计算,同时也考查平面向量数量积的运算律以及平面向量数量积的定义,考查计算能力,属于中等题.7、A【解析】由题意得 由题意得所以,因此当时,的最小值为,选A.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.8、B【解析】设男生人数为x,女生人数为x2,完善列联表,计算K2【详解】设男生人数为x,女生人数为x喜欢抖音不喜欢抖音总计男生1656x 女生1316x总计xx32K男女人数为整数故
13、答案选B【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.9、A【解析】根据正数满足,利用基本不等式有,再研究等号成立的条件即可.【详解】因为正数满足,所以,所以,当且仅当,即时取等号.故选:A【点睛】本题主要考查基本不等式取等号的条件,还考查了运算求解的能力,属于基础题.10、C【解析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断【详解】对于A选项,若,则与平行、相交、异面都可以,位置关系不确定;对于B选项,若,且,根据直线与平面平行的判定定理知,但与不平行;对于C选项,若,在平面内可找到两条相交直线、使得,于是可得出,根据直线与平面垂直的判定定理可得;对于D选项
14、,若,在平面内可找到一条直线与两平面的交线垂直,根据平面与平面垂直的性质定理得知,只有当时,才与平面垂直故选C【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题11、A【解析】由等差数列性质,得,问题得解.【详解】是等差数列,解得.故选:A【点睛】本题考查了等差数列的性质,属于基础题.12、A【解析】由题可得:在恒成立.整理得:在恒成立.求得:,即可得:,问题得解【详解】由题可得:在恒成立.即:在恒成立又,所以.所以故选A【点睛】本题主要考查了导数与函数单调性的关系,还考查了恒成立问题解决方法,考查转
15、化能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】画出示意图,根据“球心与任意小圆面的圆心的连线垂直于小圆圆面、球心与弦中点的连线垂直于弦”确定外接球的球心所在位置,最后计算出体积.【详解】如图所示:为等腰直角三角形,所以的外接圆圆心即为中点,过作一条直线,平面,则圆心在直线上,过的中点作,垂足为,此时可知:,故即为球心,所以球的半径,所以球的体积为:.【点睛】本题考查外接球的体积计算,难度一般.求解外接球、内切球的有关问题,第一步先确定球心,第二步计算相关值.其中球心的确定有两种思路:(1)将几何体放到正方体或者长方体中直接确定球心;(2)根据球心与小圆面的圆心
16、、弦中点等的位置关系确定球心.14、【解析】试题分析:对函数求导得,对求导得,设直线与曲线相切于点,与曲线相切于点,则,由点在切线上得,由点在切线上得,这两条直线表示同一条直线,所以,解得.【考点】导数的几何意义【名师点睛】函数f (x)在点x0处的导数f (x0)的几何意义是曲线yf (x)在点P(x0,y0)处的切线的斜率相应地,切线方程为yy0f (x0)(xx0)注意:求曲线切线时,要分清在点P处的切线与过点P的切线的不同15、【解析】通过将面积转化为以AB为底,P到AB的距离为高即可求解.【详解】直线的直角坐标方程为:,圆的直角坐标方程为:,即圆心为坐标原点,半径为1.因此圆心到直线
17、的距离为,因此,设P到线段AB的高为h,则,因此.【点睛】本题主要考查直线与圆的位置关系,面积最值问题.意在考查学生的转化能力,计算能力,难度中等.16、【解析】由正弦定理和已知,可以求出角的大小,进而可以求出的值,结合面积公式和余弦定理可以求出的值,最后求出周长.【详解】解:由正弦定理及得,又,由余弦定理得,.又,的周长为.【点睛】本题考查了正弦定理、余弦定理、面积公式,考查了数学运算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】分析:(1)由知,分类讨论即可求解不等式的解集;(2)由条件,根据绝对值的三角不等式,求得其最小值,即,再利用均值
18、不等式,求得的最小值,进而得到的取值范围详解:(1)由知,解集为(过程略)5分(2)由条件得,当且仅当时,其最小值,即 又,所以,此时,故的取值范围为10分点睛:本题主要考查了含绝对值不等式的求解,以及均值不等式的应用求最值,其中熟记含绝对值不等式的解法以及绝对值三角不等式、均值不等式的合理应用是解答的关键,着重考查了推理与论证能力18、(1)见解析;(2)22.5元.【解析】(1)先列出列联表,再根据列表求出K2=2537.879,从而有99.5%的把握认为晶圆的制作效果与使用西门子制程这一工艺技术有关(2)设Ai表示检测到第i个环节有问题,(i1,2,3,4),X表示成为一个合格的多晶圆需
19、消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70【详解】(1)使用工艺不使用工艺合格合格281240不合格2810合计302050K故有99.5%的把握认为单晶的晶圆的制作效果与使用西门子制程这一工艺技术有关.(2)设X表示成为一个合格的多晶的晶圆还需要消耗的费用,则X的可能取值为:0,10,20,30,40,50,60,70.P(X=0)=P(X=10)=P(X=20)=P(X=30)=P(X=40)=P(X=50)=P(X=60)=P(X=70)=所以X分布列为:X010203040506070P248361218631故E(X)=024故平均还需要耗费22.5元
20、.【点睛】本题考查独立检验的应用,考查离散型随机变量的分布列和数学期望的求法,考查离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,考查函数与方程思想,是中档题19、(1)(2)(3)【解析】(1)求g(x)的导数,利用函数g(x)单调减区间为(,1),即是方程g(x)0的两个根然后解a即可(2)利用导数的几何意义求切线方程(3)将不等式2f(x)g(x)+2成立,转化为含参问题恒成立,然后利用导数求函数的最值即可【详解】(1)由题意的解集是:即的两根分别是,1将或代入方程得(2)由(1)知:,点处的切线斜率,函数的图象在点处的切线方程为:,即(3),即:对上恒成立可得对上恒成立设,则令,得或(舍)当时,;当时,当时,取得最大值的取值范围是【点睛】本题主要考查利用导数研究函数的性质,要求熟练掌握导数和函数单调性,最值之间的关系,考查学生的运算能力对含有参数恒成立问题,则需要转化为最值恒成立20、(1)详见解析;(2).【解析】(1)推导出,从而面,由此能证明平面平面;(2)过点作于,过点作的平行线交于点,则面,以为原点,以,所在直线分别为轴、轴、轴建立空间直角坐标系,利用向量法能求出平面与平面所成锐二面角的余弦值【详解】(1)证明:四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版建筑安装工程节能评估合同模板2篇
- 二零二五年机关单位劳动合同续签与解约操作指南3篇
- 二零二五版海洋工程船舶维修保险合同3篇
- 二零二五年度教育培训机构借款合同范本:助力教育产业发展3篇
- 二零二五年红提葡萄品牌推广与销售代理合同3篇
- 二零二五版股权投资合作终止后的股权转让合同2篇
- 二零二五版保育员家庭服务与职业发展合同3篇
- 二零二五年度文化创意产业劳动保障监察与管理规范合同3篇
- 二零二五版地下管廊钢筋施工分包合同范本3篇
- 二零二五年海上货物运输保险合同与货物索赔快速处理协议3篇
- 奶茶督导述职报告
- 山东莱阳核电项目一期工程水土保持方案
- 白熊效应(修订版)
- 小学数学知识结构化教学
- 视频监控维保项目投标方案(技术标)
- 社会组织能力建设培训
- 立项报告盖章要求
- 2022年睾丸肿瘤诊断治疗指南
- 被执行人给法院执行局写申请范本
- 主变压器试验报告模板
- 安全防护通道施工方案
评论
0/150
提交评论