版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1用反证法证明:“实数中至少有一个不大于0”时,反设正确的是( )A中有一个大于0B都不大于0
2、C都大于0D中有一个不大于02设是含数1的有限实数集,是定义在上的函数,若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能值只能是( )A0BCD3甲、乙、丙三位同学独立的解决同一个间题,已知三位同学能够正确解决这个问题的概率分别为、,则有人能够解决这个问题的概率为( )ABCD4某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员( )A3人B4人C7人D12人5如图,某几何体的三视图是三个边长为1的正方形,及每个正方形中的一条对角线,则该几何体的表面积是()A4+2B9+32C6设,则的大小关
3、系是ABCD7已知正项数列an的前n项和为Sn,若an和都是等差数列,且公差相等,则a6()A B C. D18下列说法正确的是( )A命题“若,则”的否命题为“若,则”B命题“,”的否定是“,”C样本的相关系数r,越接近于1,线性相关程度越小D命题“若,则”的逆否命题为真命题9甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖.有人分别采访了四位歌手,甲说:“乙或丙获奖”;乙说:“甲、丙都未获奖”;丙说:“丁获奖”;丁说:“丙说的不对”.若四位歌手中只有一个人说的是真话,则获奖的歌手是( )A甲 B乙 C丙 D丁10平面向量与的夹角为,则( )A4B3C2D11袋中装有标号为1,2,3的三个小
4、球,从中任取一个,记下它的号码,放回袋中,这样连续做三次,若抽到各球的机会均等,事件“三次抽到的号码之和为6”,事件“三次抽到的号码都是2”,则( )ABCD12在二项式的展开式中,含的项的系数是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知某程序框图如图所示,则该程序运行后输出的值为_14已知等比数列中,则公比_;_15若是函数的极值点,则在上的最小值为_.16已知函数,若的所有零点之和为1,则实数的取值范围为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图(A),(B),(C),(D)为四个平面图形:(A)(B)(C)(D)(I)数
5、出每个平面图形的交点数、边数、区域数,并将列联表补充完整;交点数边数区域数(A)452(B)58(C)125(D)15(II)观察表格,若记一个平面图形的交点数、边数、区域数分别为,试猜想间的数量关系(不要求证明).18(12分)某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人陈老师采用A,B两种不同的教学方式分别在甲、乙两个班级进行教改实验为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如图记成绩不低于90分者为“成绩优秀”(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率
6、;(2)由以上统计数据作出列联表,并判断能否在犯错误的概率不超过0.1的前提下认为:“成绩优秀”与教学方式有关0.4000.2500.1500.1000.0500.0250.7081.3232.0722.7063.8415.024参考公式: 19(12分)某大型工厂有台大型机器,在个月中,台机器至多出现次故障,且每台机器是否出现故障是相互独立的,出现故障时需名工人进行维修每台机器出现故障的概率为已知名工人每月只有维修台机器的能力,每台机器不出现故障或出现故障时有工人维修,就能使该厂获得万元的利润,否则将亏损万元该工厂每月需支付给每名维修工人万元的工资(1)若每台机器在当月不出现故障或出现故障时
7、有工人进行维修,则称工厂能正常运行若该厂只有名维修工人,求工厂每月能正常运行的概率;(2)已知该厂现有名维修工人()记该厂每月获利为万元,求的分布列与数学期望;()以工厂每月获利的数学期望为决策依据,试问该厂是否应再招聘名维修工人?20(12分)在中,内角,的对边分别是,且满足:.()求角的大小;()若,求的最大值.21(12分)为丰富市民的文化生活,市政府计划在一块半径为200m,圆心角为的扇形地上建造市民广场,规划设计如图:内接梯形区域为运动休闲区,其中A,B分别在半径,上,C,D在圆弧上,;上,;区域为文化展区,长为,其余空地为绿化区域,且长不得超过200m.(1)试确定A,B的位置,使
8、的周长最大?(2)当的周长最长时,设,试将运动休闲区的面积S表示为的函数,并求出S的最大值.22(10分)设命题幂函数在上单调递减。命题在上有解;若为假,为真,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而要证明题的否定为:“都大于0”,从而得出结论【详解】解:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题:“实数中至少有一个不大于0”的否定为“都大于0”,故选:【点睛】本题主要考查用命题的否定,反证法证明数学命题的方
9、法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题2、C【解析】先阅读理解题意,则问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,再结合函数的定义逐一检验即可.【详解】解:由题意可得:问题可转化为圆上有12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合,则通过代入和赋值的方法,当时,此时得到圆心角为,然而此时或时,都有2个与之对应,根据函数的定义,自变量与应变量只能“一对一”或“多对一”,不能“一对多”,因此,只有当时,此时旋转,满足一个对应一个,所以的可能值只能是,故选:C.【点睛】本题考查了函数的定义,重点考查了函数的
10、对应关系,属基础题.3、B【解析】试题分析:此题没有被解答的概率为,故能够将此题解答出的概率为故选D考点:相互独立事件的概率乘法公式点评:本题考查相互独立事件的概率乘法公式、互斥事件的概率和公式、对立事件的概率公式;注意正难则反的原则,属于中档题4、B【解析】根据分层抽样原理求出应抽取的管理人数【详解】根据分层抽样原理知,应抽取管理人员的人数为: 故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题5、B【解析】画出几何体的直观图,利用三视图的数据,求解几何体的表面积即可【详解】几何体的直观图如图:所以几何体的表面积为:3+31故选:B【点睛】本题考查了根据三视图求解几何体的表面积,判断几
11、何体的形状是解题的关键,属于中档题.6、A【解析】试题分析:,即,考点:函数的比较大小7、B【解析】设等差数列an和的公差为d,可得an=a1+(n1)d,=+(n1)d,于是=+d,=+2d,化简整理可得a1,d,即可得出【详解】设等差数列an和的公差为d,则an=a1+(n1)d,=+(n1)d,=+d,=+2d,平方化为:a1+d=d2+2d,2a1+3d=4d2+4d,可得:a1=dd2,代入a1+d=d2+2d,化为d(2d1)=0,解得d=0或d=0时,可得a1=0,舍去,a1=a6=故答案为:B【点睛】(1)本题主要考查等差数列的通项和前n项和,意在考查学生岁这些知识的掌握水平和
12、分析推理计算能力.(2)本题的关键是利用=+d,=+2d求出d.8、D【解析】利用四种命题之间的变换可判断A;根据全称命题的否定变法可判断B;利用相关系数与相关性的关系可判断C;利用原命题与逆否命题真假关系可判断D.【详解】对于A,命题“若,则”的否命题为“若,则”,故A错误;对于B,命题“,”的否定是“,”,故B错误;对于C,样本的相关系数r,越接近于1,线性相关程度越大,故C错误;对于D,命题“若,则”为真命题,故逆否命题也为真命题,故D正确;故选:D【点睛】本题考查了判断命题的真假、全称命题的否定、四种命题的转化以及原命题与逆否命题真假关系、相关系数与相关性的关系,属于基础题.9、A【解
13、析】分析:因为四位歌手中只有一个人说的是真话,假设某一个人说的是真话,如果与条件不符,说明假设不成立,如果与条件相符,说明假设成立.详解:若乙是获奖的歌手,则甲、乙、丁都说的真话,不符合题意; 若丙是获奖的歌手,则甲、丁都说的真话,不符合题意; 若丁是获奖的歌手,则乙、丙都说的真话,不符合题意; 若甲是获奖的歌手,则甲、乙、丙都说的假话,丁说的真话,符合题意;故选A.点睛:本题考查合情推理,属基础题.10、C【解析】根据条件,得出向量的坐标,进行向量的和的计算,遂得到所求向量的模【详解】由题目条件,两向量如图所示:可知则答案为2.【点睛】本题考查了向量的坐标和线性加法运算,属于基础题11、A【
14、解析】试题分析:由题意得,事件“三次抽到的号码之和为”的概率为,事件同时发生的概率为,所以根据条件概率的计算公式.考点:条件概率的计算.12、C【解析】利用二项展开式的通项公式求出第r+1项,令x的指数为4求得【详解】解:对于,对于103r4,r2,则x4的项的系数是C52(1)210故选点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.二、填空
15、题:本题共4小题,每小题5分,共20分。13、【解析】执行程序框图,依次写出每次循环得到的S,i的值,当i2019时,不满足条件退出循环,输出S的值为【详解】执行程序框图,有S2,i1满足条件 ,执行循环,S,i2满足条件 ,执行循环,S,i3满足条件 ,执行循环,S,i4满足条件 ,执行循环, S2,i5观察规律可知,S的取值以4为周期,由于2018504*4+2,故有:S, i2019,不满足条件退出循环,输出S的值为,故答案为【点睛】本题主要考查了程序框图和算法,其中判断S的取值规律是解题的关键,属于基本知识的考查14、2 4 【解析】根据等比数列通项公式构造方程求解即可.【详解】 本题
16、正确结果:;【点睛】本题考查等比数列基本量的求解,关键是熟练掌握等比数列通项公式,属于基础题.15、【解析】先对f(x)求导,根据可解得a的值,再根据函数的单调性求出区间上的最小值【详解】,则,解得,所以,则.令,得或;令,得.所以在上单调递减;在上单调递增.所以.【点睛】本题考查由导数求函数在某个区间内的最小值,解题关键是由求出未知量a16、【解析】先根据分段函数的形式确定出时的零点为,再根据时函数解析式的特点和导数的符号确定出图象的“局部对称性”以及单调性,结合所有零点的和为1可得,从而得到参数的取值范围.【详解】当时,易得的零点为,当时,当时,的图象在上关于直线对称.又,当时,故单调递增
17、,当时,故单调递减,且,.因为的所有零点之和为1,故在内有两个不同的零点,且,解得.故实数a的取值范围为故答案为:【点睛】本题考查分段函数的零点,已知函数零点的个数求参数的取值范围时,应根据解析式的特点和导数寻找函数图象的对称性和函数的单调性,最后根据零点的个数得到特殊点处函数的符号,本题属于较难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)列联表见解析;(II).【解析】(I)数出结果填入表格即可(II)观察一个平面图形的交点数、边数、区域数分别为E,F,G,即可猜想E,F,G之间的等量关系【详解】(I)(II)观察表格,若记一个平面图形的交点数、边数、区域数
18、分别为,猜想之间的数量关系为.【点睛】本题考查归纳推理,实际上本题考查的重点是给出几个平面图形的交点数、边数、区域数写猜想E,F,G之间的等量关系,本题是一个综合题目,知识点结合的比较巧妙18、(1);(2)见解析【解析】分析:(1)不低于86的成绩有6个,可用列举法列出任取2个的所有事件,计算出概率(2)由茎叶图中数据得出列联表中数据,再根据计算公式计算出得知结论详解: (1)由题意知本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件是:(86,91), (86,96), (86,97), (86,99), (86,99), (91,96),(9
19、1,97), (91,99), (91,99), (96,97), (96,99), (96,99),(97,99),(97,99),(99,99),共有15种结果,符合条件的事件数(91,96),(91,97),(91,99),(91,99),(96,97),(96,99),(96,99),(97,99),(97,99),(99,99),共有13种结果, 根据等可能事件的概率得到P(2)由已知数据得甲班乙班总计成绩优秀156成绩不优秀191514总计232343根据列联表中的数据,计算得随机变量K2的观测值k1.117,由于11172736,所以在犯错误的概率不超过31的前提下认为:“成绩优
20、秀”与教学方式有关点睛:本题考查等可能事件的概率及独立性检验,用列举法求此概率是常用方法,由所给公式计算出即知有无关系的结论,因此本题还考查了运算求解能力19、(1);(2)();()不应该.【解析】(1)根据相互独立事件的概率公式计算出事故机器不超过台的概率即可;(2)(i)求出的可能取值及其对应的概率,得出的分布列和数学期望;()求出有名维修工人时的工厂利润,得出结论【详解】解:(1)因为该工厂只有名维修工人,故要使工厂正常运行,最多只有台大型机器出现故障该工厂正常运行的概率为:(2)(i)的可能取值有,的分布列为:X 31 44 P ()若工厂再招聘一名维修工人,则工厂一定能正常运行,工厂所获利润为万元,因为,该厂不应该再招聘名维修工人【点睛】本题考查了相互独立事件的概率计算,离散型随机变量的分布列与数学期望计算,属于中档题20、();()2.【解析】()运用正弦定理实现角边转化,然后利用余弦定理,求出角的大小;()方法1:由(II)及,利用余弦定理,可得,再利用基本不等式,可求出的最大值;方法2:利用正弦定理实现边角转化,利用两角和的正弦公式和辅助角公式,利用正弦型函数的单调性,可求出的最大值;【详解】(I)由正弦定理得:, 因为,所以, 所以由余弦定理得:, 又在中,所以. (II)方法1:由(I)及,得,即, 因为,(当且仅当时等号成立) 所以.则(当且仅
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 熟食净菜配送服务
- 科技企业租赁合同模板
- 化工企业计划生育承诺书样本
- 医学研究彩超机租赁合同
- 医院绿化带围墙施工协议
- 服务器租赁合作合同
- 城市交通信号暂行管理办法
- 烟草行业托盘租赁协议
- 生态农业科技园建设合同
- 教育信息化项目招投标要点解析
- 大班音乐《小老鼠和泡泡糖》课件
- 12、口腔科诊疗指南及技术操作规范
- 四年级上册Unit1 My classroom作业设计案例
- 孕产妇妊娠风险筛查与评估
- 走出舒适区:如何突破自我设限获得持久行动力
- 人居环境科学讲义
- 中国成人患者肠外肠内营养临床应用指南(2023版)
- 幼儿园心理健康教育课件含教案-《情绪》课件
- 折翼的精灵:青少年自伤心理干预与预防
- 2023年资产负债表模板
- 初三化学上学期氧气-课件
评论
0/150
提交评论