自控课件自动控制理论_第1页
自控课件自动控制理论_第2页
自控课件自动控制理论_第3页
自控课件自动控制理论_第4页
自控课件自动控制理论_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1Chapter 7 Stability in the Frequency Domain7.1 Introduction7.2 Mapping Contours in the s-plane7.3 Nyquist Stability Criterion7.4 Stability Margin of System 7.5 Dynamics performance of closed-loop from open-loop frequency characteristic7.6 Summary27.1 IntroductionDeveloped by H.Nyquist in 1932.Based

2、 on Cauchys theorem.3The frequency response can be obtained experimentally.It can be utilized to investigate the relative stability.4Where L(s) is a rational function of s.To ensure stability, it must be ascertained that all zeros of F(s) lie in the left-hand s-plane.Propose a mapping of the right-h

3、and s-plane in F(s)-plane.57.2 Mapping Contours in the s-planeA contour map is a contour in one plane mapped into another plane by a relation F(s).Example:6Cauchys theorem: If a contour s in the s-plane encircles Z zeros and P poles of F(s) and does not pass through any poles and zeros of F(s) and t

4、he traversal is in the clockwise direction along the contour, the corresponding contour F in the F(s)-plane encircles the origin of the F(s)-plane N=Z-P times in the clockwise direction.7Another example:8The poles of F(s) are the poles of L(s).The zeros of F(s) are the characteristic roots of the sy

5、stem.7.3 Nyquist Stability Criterion9For a system to be stable, all the zeros of F(s) must lie in the left-hand s-plane.Choose a contour s in the s-plane that encloses the entire right-hand s-plane, the number of encirclements of the origin of the F(s)-plane is N=Z-P.Z: zeros in RHPP: poles in RHPSo

6、 the number of unstable poles of the system is Z=N+P10The contour F is known as the Nyquist diagram or ploar plot of F(s).As L(s)=F(s)-1, the number of encirclements of the origin in F(s)-plane es the number of encirclements of -1 point in L(s)-plane.L(s) is the open-loop transfer function.11Nyquist

7、 stability criterion1. A feedback system is stable if and only if the contour L in the L(s)-plane does not encircle the (-1, 0) point when the number of poles of L(s) in the right-hand s-plane is zero (P=0).2. A feedback system is stable if and only if, for the contour L, the number of counter-clock

8、wise encirclements of the (-1, 0) point is equal to the number of poles of L(s) with positive real parts.12Example 7.1N=Z=0, so the system is stable.13Example 7.2 Assuming open loop transfer function is determine the stability of the system at K=20 and K=100.14We need to find the cross-over point an

9、d compare it with -1!15So the system is stable at K=20 and unstable at K=100.161200.3K=2017K=2018100K=1001911.48K=10020K=10021Example 7.322(a) The origin of the s-plane23is the polar plot of L(s).is mapped into the origin of the L(s)-plane.is symmetrical to the polar plot.24Note: 1.252.26 3. The con

10、clusion can be expanded to the system including delay unit. 4. If the contour L(jw) overpass the (-1, j0) point, that is one close-loop pole on the jw-axis, the system is critically stable.27 5. System with v poles at the origin The supplement curve must be draw. The small semicircular detour around

11、 the pole at the origin can be represented by setting 286. If the number of counter-clockwise encirclements is NP, then the closed-loop system is unstable with Z unstable poles, where Z=P-N. 29正负穿越正穿越:相角增加,逆时针负穿越:相角减少,顺时针极坐标图穿越点(-1,0)左边实轴的正负穿越次数之差等于极坐标图逆时针方向包围点(-1,0)的周数。Nyquist判据: Nyquist图穿越点(-1,0)左

12、边实轴的正负穿越次数之差应等于P。P:开环传递函数正实部极点数。30Example 7.4It is possible to encircle the -1 point.31At real axis, So the system is stable when 32Example 7.533So the system is stable when Tt.34Example 7.6 non-minimum phase system35Conclusion: Nyquist diagram encircles the 1 point one time in the direction of coun

13、ter-clockwise. N=1,P=1,Z=P-N=0, so the system is stable. The system is stable when K3. 36Example 7.7:The open-loop TF is Determine the changing range of K.The 1 point located on A or C, the system is stable. The 1 point located on B or D, the system is unstable.37We can get: 1 locus on A, K19.2, sta

14、ble1 locus on B, 19.2K334, unstable1 locus on C, 334K13200, unstableSo the changing range of K is 0 K19.2 and 334K0(PM1(0 dB) indicates a stable closed-loop system and the system will remain stable if the loop gain increase is less than GM. GM1(0 dB) indicates an unstable closed-loop system and a re

15、duction of loop gain at least GM is required for the system to e stable.420phase margin Gain margin Kg43Gain and Phase Margins on Bode plots.447.5 Dynamics performance of closed-loop from open-loop frequency characteristic1. System type and steady state error45System type Slope of the low frequency

16、asymptote type 0 0. type 1 -20dB/dec. type 2 -40dB/dec. 462. The specification of closed loop system in frequency domainThe second-order control system4748The peak value of magnitude of control system49Bandwidth of control system 503. The specification of open loop system in frequency domainGain crossover frequency51Phase margin524. The specification of high order system537.6 Summary In the frequency domain, Nyquists criterion can be used to determine the stability of a feedback control system. Nyquists criterion provides two relative stability measures: gain margin and phase margin

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论