高二选修独立性检验二 完整版课件PPT_第1页
高二选修独立性检验二 完整版课件PPT_第2页
高二选修独立性检验二 完整版课件PPT_第3页
高二选修独立性检验二 完整版课件PPT_第4页
高二选修独立性检验二 完整版课件PPT_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.2独立性检验的基本思想及其初步应用(二)高二数学 选修1-2 第一章 统计案例不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计98749199651、列联表2、三维柱形图3、二维条形图不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟080007000600050004000300020001000从三维柱形图能清晰看出各个频数的相对大小。从二维条形图能看出,吸烟者中患肺癌的比例高于不吸烟患肺癌的比例。通过列联表、图形直观判断两个分类变量是否相关:不吸烟吸烟患肺癌比例不患肺癌比例4、等高条形图等高条形图更清晰地表达了两种情况下患肺癌的比例。随机变量-卡方统计量 5、独

2、立性检验0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828临界值表0.1%把握认为A与B无关1%把握认为A与B无关99.9%把握认A与B有关99%把握认为A与B有关90%把握认为A与B有关10%把握认为A与B无关没有充分的依据显示A与B有关,但也不能显示A与B无关第一步:假设H0:两个分类变量之间没有关系 总计aba+bcdc+d总计a+cb+da+b+c+d第二步:列出22列联表 6、独立性检验的步骤第三步:计算第四步:查对临界值表,作出判断。P(kk0

3、)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828思考: 利用上节课的结论,你能从列联表的三维柱形图中看出两个分类变量是否相关呢?表1-11 22联表 一般地,假设有两个分类变量X和Y,它们的取值别为x1,x2和y1,y2,其样本频数列联表(称为22列联表)为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d 若要判断的结论为:H1:“X与Y有关系”,可以按如下步骤判断H1成立的可能性:1、通过三维柱形图和二维条形图,可以粗略地

4、判断两个变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度。 (1)在三维柱形图中, 主对角线上两个柱形高度的乘积ad与副对角线上两个柱形高度的乘积bc相差越大,H1成立的可能性就越大。 (2)在二维条形图中,可以估计满足条件X=x1的个体中具有Y=y1的个体所占的比例 ,也可以估计满足条件X=x2的个体中具有Y=y1的个体所占的比例 。两个比例相差越大,H1成立的可能性就越大。具体作法是:(1)根据实际问题需要的可信程度确定临界值 ;(2)利用公式(1),由观测数据计算得到随机变量 的观测值;(3)如果 ,就以 的把握认为“X与Y有关系”;否则就说样本观测数据没有提供“X与Y有关系

5、”的充分证据。2、可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437 相应的三维柱形图如图所示,比较来说,底面副对角线上两个柱体高度的乘积要大一些,因此可以在某种程度上认为“秃顶与患心脏病有关”。秃头不秃头例1

6、 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶。分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?解:根据题目所给数据得到如下列联表:患心脏病不患心脏病总计秃顶214175389不秃顶4515971048总计6657721437 根据联表1-13中的数据,得到所以有99%的把握认为“秃顶患心脏病有关”。因为这组数据来自住院的病人,因此所得到的结论适合住院的病人群体例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300名学生,得到如下联表:

7、喜欢数学课程不喜欢数学课程总计男3785122女35143178总计72228300由表中数据计算K2的观测值k 4.514。能够以95%的把握认为高中生的性别与是否喜欢数学课程之间有关系吗?请详细阐述得出结论的依据。在假设“性别与喜欢数学课程之间没有关系”的前提下, 的观测值k=4.514,因此应该断定“性别与喜欢数学课程之间有关系”成立,并且这种判断结果出错的可能性约为5%。所以,约有95%的把握认为“性别与喜欢数学课程之间有关系”。且例3.在500人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外500名未用血清的人的感冒记录作比较,结果如表所示。未感冒感冒合计使用血清2522

8、48500未使用血清224276500合计4765241000试画出列联表的条形图,并通过图形判断这种血清能否起到预防感冒的作用?并进行独立性检验。解:设H0:感冒与是否使用该血清没有关系。因当H0成立时,K26.635的概率约为0.01,故有99%的把握认为该血清能起到预防感冒的作用。P(kk0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828例4、某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分也为优秀的人数如下表所示,则数学成绩优秀与物理、化学、总分也优秀哪个关系较大?物理化学总分数学优秀228225267数学非优秀14315699注:该年级此次考试中,数学成绩优秀的有360人,非优秀的有880人。物理优秀物理非优秀合计数学优秀数学非优秀合计(1)列出数学与物理优秀的2x2列联表如下2281323601437378803718691240代入公式可得 注:该年级此次考试中,数学成绩优秀的有360人,非优秀的有880人。物理化学总分数学优秀228225267数学非优秀14315699(2)列出数学与化学优秀的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论