版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数fx=sinx+6+A16,13B12已知集合,则的值域为()ABCD3若为过椭圆中心的弦,为椭圆的焦点,则面积的最大值为( )A20B30C50D604在中,为边上的中线,为
2、的中点,且,则( )ABCD5已知数列的通项公式是,则( )A0B55C66D786设,是非零向量,若对于任意的,都有成立,则ABCD7过抛物线()的焦点且倾斜角为的直线交抛物线于两点.,且在第一象限,则( )ABCD8已知复数z=2i1-i,则A第一象限B第二象限C第三象限D第四象限9已知复数,满足,则( )A1BCD510已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为( )AB2C4D11函数()的图象的大致形状是( )ABCD12在中,内角A,B,C所对的边分别为a,b,c,D是AB的中点,若,且,则面积的最大值是( )ABCD二、填空题:本题共4小题,每
3、小题5分,共20分。13若方程有两个不等实根,则实数的取值范围是_.14在中,角所对的边分别为,的平分线交于点D,且,则的最小值为_15已知数列的各项均为正数,记为的前n项和,若,则_.16平面向量,(R),且与的夹角等于与的夹角,则 .三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆,点,点满足(其中为坐标原点),点在椭圆上.(1)求椭圆的标准方程;(2)设椭圆的右焦点为,若不经过点的直线与椭圆交于两点.且与圆相切.的周长是否为定值?若是,求出定值;若不是,请说明理由.18(12分)已知等比数列,其公比,且满足,和的等差中项是1()求数列的通项公式;()若
4、,是数列的前项和,求使成立的正整数的值19(12分)团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务,市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两
5、个团购网站的商家数为,试求事件“”的概率.20(12分)(本小题满分12分)已知椭圆C:x2a2+y(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且OM+ON=t21(12分)已知函数u(x)xlnx,v(x)x1,mR(1)令m2,求函数h(x)的单调区间;(2)令f(x)u(x)v(x),若函数f(x)恰有两个极值点x1,x2,且满足1e(e为自然对数的底数)求x1x2的最大值22(10分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,
6、交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】将fx整理为3sinx+3,根据x的范围可求得x+3【详解】f当x0,时,又f0=3sin由fx在0,上的值域为32解得:本题正确选项:A【点睛】本题考查利用正弦型函数的值域求解参数范围的问题,关键是能够结合正弦型函数的图象求得角的范围的上下限,从而得到关于参数的不等式.2A【解析】先求出集合,化简=,令,得由二次函数的性质即可得值域.【详解】由,得 ,令, ,所以得 , 在 上递增,在上递减,
7、 ,所以,即 的值域为故选A【点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题3D【解析】先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D. 【点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式的应用,着重考查了数形结合思想,以及化归与转化思想的应用.4A【解
8、析】根据向量的线性运算可得,利用及,计算即可.【详解】因为,所以,所以,故选:A【点睛】本题主要考查了向量的线性运算,向量数量积的运算,向量数量积的性质,属于中档题.5D【解析】先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.【详解】解:由题意得,当为奇数时,当为偶数时, 所以当为奇数时,;当为偶数时,所以 故选:D【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.6D【解析】画出,根据向量的加减法,分别画出的几种情况,由数形结合可得结果.【详解】由题意,得向量是
9、所有向量中模长最小的向量,如图,当,即时,最小,满足,对于任意的,所以本题答案为D.【点睛】本题主要考查了空间向量的加减法,以及点到直线的距离最短问题,解题的关键在于用有向线段正确表示向量,属于基础题.7C【解析】作,;,由题意,由二倍角公式即得解.【详解】由题意,准线:,作,;,设,故,.故选:C【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.8C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选
10、C点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力9A【解析】首先根据复数代数形式的除法运算求出,求出的模即可【详解】解:,故选:A【点睛】本题考查了复数求模问题,考查复数的除法运算,属于基础题10C【解析】设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.【点睛】本题考查直线与圆位
11、置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.11C【解析】对x分类讨论,去掉绝对值,即可作出图象.【详解】 故选C【点睛】识图常用的方法(1)定性分析法:通过对问题进行定性的分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图象特征,联想相关函数模型,利用这一函数模型来分析解决问题12A【解析】根据正弦定理可得,求出,根据平方关系求出.由两端平方,求的最大值,根据三角形面积公式,求出面积的最大值.【详解】中,由正弦定理可得,整理得,由余弦定理,得.D是AB的中点,且
12、,即,即,当且仅当时,等号成立.的面积,所以面积的最大值为.故选:.【点睛】本题考查正、余弦定理、不等式、三角形面积公式和向量的数量积运算,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由知x0,故.令,则.当时,;当时,.所以在(0,e)上递增,在(e,+)上递减.故,即.149【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不
13、等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.15127【解析】已知条件化简可化为,等式两边同时除以,则有 ,通过求解方程可解得,即证得数列为等比数列,根据已知即可解得所求.【详解】由.故答案为:.【点睛】本题考查通过递推公式证明数列为等比数列,考查了等比的求和公式,考查学生分析问题的能力,难度较易.162【解析】试题分析:,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)是,【解析】(1)设,根据条件可求出的坐标,再利用在椭圆上,代入椭圆方程求出即可;(2)设运用勾股定理
14、和点满足椭圆方程,求出,,再利用焦半径公式表示出,进而求出周长为定值【详解】(1)设,因为,即则,即,因为均在上,代入得,解得,所以椭圆的方程为; (2)由(1)得,作出示意图,设切点为,则,同理即,所以,又,则的周长,所以周长为定值.【点睛】标准方程的求解,椭圆中的定值问题,考查焦半径公式的运用,考查逻辑推理能力和运算求解能力,难度较难.18 () .() .【解析】()由等差数列中项性质和等比数列的通项公式,解方程可得首项和公比,可得所求通项公式;(),由数列的错位相减法求和可得,解方程可得所求值【详解】()等比数列,其公比,且满足,和的等差中项是即有,解得: ()由()知:则相减可得:化
15、简可得:,即为解得:【点睛】本题考查等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及方程思想和运算能力,属于中档题19(1);(2)从而的分布列为012;(3).【解析】(1)运用概率的计算公式求概率分布,再运用数学期望公式进行求解;(2)借助题设条件运用贝努力公式进行分析求解:(1)记所选取额两家商家加入团购网站的数量相等为事件,则,所以他们加入团购网站的数量不相等的概率为.(2)由题,知的可能取值分别为0,1,2,从而的分布列为012.(3)所调查的50家商家中加入了两个团购网站的商家有25家,将频率视为概率,则从市中任取一家加入团购网站的商家,他同时加入了两个团购网站的
16、概率为,所以,所以事件“”的概率为.20(1)x24+【解析】试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力第一问,先利用离心率、a2=b2+c2、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到x1+x2、x1x试题解析:(1)e=22,又S=122a2b=4椭圆C的标准方程为x2(2)由题意知,当直线MN斜率存在时,设直线方程为y=k(x-1),M(x联立方程x24+因为直线与椭圆交
17、于两点,所以=16kx又OM因为点P在椭圆x24+即2k又|OM即|NM|4化简得:13k4-5k2t2=1-当直线MN的斜率不存在时,M(1,62t-1,考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系21(1)单调递增区间是(0,e),单调递减区间是(e,+)(2)【解析】(1)化简函数h(x),求导,根据导数和函数的单调性的关系即可求出(2)函数f(x)恰有两个极值点x1,x2,则f(x)lnxmx0有两个正根,由此得到m(x2x1)lnx2lnx1,m(x2+x1)lnx2+lnx1,消参数m化简整理可得ln(x1x2)ln,设t,构造函数g(t)()lnt,利用导数判断函数的单
18、调性,求出函数的最大值即可求出x1x2的最大值【详解】(1)令m2,函数h(x),h(x),令h(x)0,解得xe,当x(0,e)时,h(x)0,当x(e,+)时,h(x)0,函数h(x)单调递增区间是(0,e),单调递减区间是(e,+)(2)f(x)u(x)v(x)xlnxx+1,f(x)1+lnxmx1lnxmx,函数f(x)恰有两个极值点x1,x2,f(x)lnxmx0有两个不等正根,lnx1mx10,lnx2mx20,两式相减可得lnx2lnx1m(x2x1),两式相加可得m(x2+x1)lnx2+lnx1,ln(x1x2)ln,设t,1e,1te,设g(t)()lnt,g(t),令(t)t212tlnt,(t)2t2(1+lnt)2(t1lnt),再令p(t)t1lnt,p(t)10恒成立,p(t)在(1,e单调递增,(t)p(t)p(1)11ln10,(t)在(1,e单调递增,g(t)(t)(1)112ln10,g(t)在(1,e单调递增,g(t)maxg(e),ln(x1x2),x1x2故x1x2的最大值为【点睛】本题考查了利用导数求函数的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024某影视公司与某音频公司关于影视作品音频制作之合同
- 2025年度数据中心房屋租赁及电力设备供应合同4篇
- 2025年度智慧城市大数据分析服务合同4篇
- 2025年度幼儿园幼儿保健服务承包合同:健康护航协议4篇
- 2024版项目委托融资服务协议书
- 2025年度文化产业项目投资合同3篇
- 2025年度智能电网建设出资协议参考文本4篇
- 2025年度商场橱窗窗帘设计安装与广告合作合同3篇
- 2025年度新能源汽车充电设施代付款协议4篇
- 《建筑业税收政策培训教学课件》
- 光伏发电站集中监控系统通信及数据标准
- 建筑垃圾减排及资源化处置措施
- 2024年辽宁石化职业技术学院单招职业适应性测试题库附答案
- 中西方校服文化差异研究
- 2024年一级建造师考试思维导图-市政
- 高压架空输电线路反事故措施培训课件
- 隐私计算技术与数据安全保护
- 人教版小学数学五年级上册口算题卡
- 《子宫肉瘤》课件
- 小学防范诈骗知识讲座
- 当保安夜班睡觉管理制度
评论
0/150
提交评论