版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、绝密启用前 2004年普通高等学校招生全国统一考试(上海卷)数学试卷(理工农医类)(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题满分48分,每小题4分)1若tg=,则tg(+)= .2设抛物线的顶点坐标为(2,0),准线方程为x=1,则它的焦点坐标为 .3设集合
2、A=5,log2(a+3),集合B=a,b.若AB=2,则AB= .4设等比数列an(nN)的公比q=,且(a1+a3+a5+a2n-1)=,则a1= .5设奇函数f(x)的定义域为5,5.若当x0,5时, f(x)的图象如右图,则不等式f(x)0的解是 .6已知点A(1, 2),若向量与=2,3同向, =2,则点B的坐标为 .7在极坐标系中,点M(4,)到直线l: (2cos+sin)=4的距离d= .8圆心在直线2xy7=0上的圆C与y轴交于两点A(0, 4),B(0, 2),则圆C的方程为 .9若在二项式(x+1)10的展开式中任取一项,则该项的系数为奇数的概率是 . (结果用分数表示)
3、10若函数f(x)=a在0,+上为增函数,则实数a、b的取值范围是 .11教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是 .12若干个能唯一确定一个数列的量称为该数列的“基本量”.设an是公比为q的无穷等比数列,下列an的四组量中,一定能成为该数列“基本量”的是第 组.(写出所有符合要求的组号) S1与S2; a2与S3; a1与an; q与an. 其中n为大于1的整数, Sn为an的前n项和.二、选择题(本大题满分16分,每小题4分)13在下列关于直线l、m与平面、的命题中,真命题是( )A若l且,则l. B若l且,则l.C若l且,则l. D若=m且lm,则l.14已
4、知是周期为2的函数,当的解集为 ( ) Axx=2k+,kZ. Bx|x=2k+,kZ.Cxx=2k,kZ. Dx|x=2k+(1)K,kZ.15若函数y=f(x)的图象可由函数y=lg(x+1)的图象绕坐标原点O逆时针旋转得到,则f(x)=( ) A10 x1. B10 x1. C110 x. D110 x.16某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下行业名称计算机机械营销物流贸易应聘人数2158302002501546767457065280 行业名称计算机来营销机械建筑化工招聘人数来 124620102935891157651670436 若用同一行业中应聘人数
5、与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) A计算机行业好于化工行业. B建筑行业好于物流行业.C机械行业最紧张. D营销行业比贸易行业紧张.三、解答题(本大题满分86分)17(本题满分12分) 已知复数z1满足(1+i)z1=1+5i, z2=a2i, 其中i为虚数单位,aR, 若,求a的取值范围.18(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8m2. 问x、y分别为多少(精确到0.001m) 时用料最省? 19(本题满分14分) 第1小题满分6分, 第
6、2小题满分8分. 记函数f(x)=的定义域为A, g(x)=lg(xa1)(2ax)(a3时,关于x的方程f(x)= f(a) 有三个实数解. 21(本题满分16分) 第1小题满分4分, 第2小题满分6分, 第3小题满分6分 如图,PABC是底面边长为1的正三棱锥,D、E、F分别为棱长PA、PB、PC上的点, 截面DEF底面ABC, 且棱台DEFABC与棱锥PABC的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)证明:PABC为正四面体;(2)若PD=PA, 求二面角DBCA的大小;(结果用反三角函数值表示)(3)设棱台DEFABC的体积为V, 是否存在体积为V且各棱长均相等的直平行
7、六面体,使得它与棱台DEFABC有相同的棱长和? 若存在,请具体构造出这样的一个直平行六面体,并给出证明;若不存在,请说明理由. 22(本题满分18分) 第1小题满分6分, 第2小题满分8分, 第3小题满分4分. 设P1(x1,y1), P1(x2,y2), Pn(xn,yn)(n3,nN) 是二次曲线C上的点, 且a1=2, a2=2, , an=2构成了一个公差为d(d0) 的等差数列, 其中O是坐标原点. 记Sn=a1+a2+an.(1)若C的方程为=1,n=3. 点P1(10,0) 及S3=255, 求点P3的坐标; (只需写出一个)(2)若C的方程为(ab0). 点P1(a,0),
8、对于给定的自然数n, 当公差d变化时, 求Sn的最小值;(3)请选定一条除椭圆外的二次曲线C及C上的一点P1,对于给定的自然数n,写出符合条件的点P1, P2,,Pn存在的充要条件,并说明理由.符号意义本试卷所用符号等同于实验教材符号向量坐标 =x,y=(x,y)正切tgtan 2004年普通高等学校招生全国统一考试数学参考答案(理工类)(上海卷)一、填空题(本大题满分48分,每小题4分)13 2(5,0) 31,2,5 42 5(2,0)(2,5 6(5,4)7 8(x2)2+(y+3)2=5 9 10a0且b0 11用代数的方法研究图形的几何性质 12、二、选择题(本大题满分16分,每小题
9、4分)13B 14C 15A 16B三、解答题(本大题满分86分)17【解】由题意得 z1=2+3i, 于是=,=. 由,得a28a+70,1a7.18【解】由题意得 xy+x2=8,y=(0 x4). 于是, 框架用料长度为 l=2x+2y+2()=(+)x+=4. 当(+)x=,即x=84时等号成立. 此时, x2.343,y=22.828. 故当x为2.343m,y为2.828m时, 用料最省.19【解】(1)20, 得0, x0, 得(xa1)(x2a)0.a2a, B=(2a,a+1).BA, 2a1或a+11, 即a或a2, 而a1,a0),它的图象与直线y=x的交点分别为 A(,
10、)B(,) 由=8,得k=8,. f2(x)=.故f(x)=x2+. (2) 【证法一】f(x)=f(a),得x2+=a2+, 即=x2+a2+. 在同一坐标系内作出f2(x)=和f3(x)= x2+a2+的大致图象,其中f2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f3(x)的图象是以(0, a2+)为顶点,开口向下的抛物线. 因此, f2(x)与f3(x)的图象在第三象限有一个交点, 即f(x)=f(a)有一个负数解. 又f2(2)=4, f3(2)= 4+a2+ 当a3时,. f3(2)f2(2)= a2+80, 当a3时,在第一象限f3(x)的图象上存在一点(2,f
11、3(2)在f2(x)图象的上方. f2(x)与f3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解. 因此,方程f(x)=f(a)有三个实数解. 【证法二】由f(x)=f(a),得x2+=a2+, 即(xa)(x+a)=0,得方程的一个解x1=a. 方程x+a=0化为ax2+a2x8=0, 由a3,=a4+32a0,得 x2=, x3=, x20, x1 x2,且x2 x3. 若x1= x3,即a=,则3a2=, a4=4a, 得a=0或a=,这与a3矛盾, x1 x3. 故原方程有三个实数解.21【证明】(1) 棱台DEFABC与棱锥PABC的棱长和相等, DE+EF+FD
12、=PD+PE+PF. 又截面DEF底面ABC, DE=EF=FD=PD=PE=PF,DPE=EPF=FPD=60, PABC是正四面体. 【解】(2)取BC的中点M,连接PM,DM.AM. BCPM,BCAM, BC平面PAM,BCDM, 则DMA为二面角DBCA的平面角. 由(1)知,PABC的各棱长均为1, PM=AM=,由D是PA的中点,得 sinDMA=,DMA=arcsin.(3)存在满足条件的直平行六面体. 棱台DEFABC的棱长和为定值6,体积为V. 设直平行六面体的棱长均为,底面相邻两边夹角为, 则该六面体棱长和为6, 体积为sin=V. 正四面体PABC的体积是,0V,08V
13、b0)上各点的最小距离为b,最大距离为a. a1=2=a2, d0,且an=2=a2+(n1)db2, d0 Sn=na2+d在,0)上递增, 故Sn的最小值为na2+=. 【解法二】对每个自然数k(2kn), 由x+y=a2+(k1)d,解得y=+=1 0 yb2,得d0 d0. 原点O到双曲线C上各点的距离h,+,且=a2, 点P1, P2,,Pn存在当且仅当22,即d0. 【解法二】若抛物线C:y2=2Px,点P1(0,0), 则对于给定的n, 点P1, P2,Pn存在的充要条件是d0.理由同上 【解法三】若圆C:(xa)2+y2=a2(a0), P1(0,0), 则对于给定的n, 点P
14、1, P2,,Pn存在的充要条件是00且2=(n1)d4a2.即0b0,a0.三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)28.应用数学归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些
15、数学方法用来证明时也成立。四. HYPERLINK /search.aspx t /content/19/1226/14/_blank 三角函数29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)33
16、.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移3个单位得到的图象的解析式为,即.(3)点的平移公式:点按向量平移到
17、点,则.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。39.正弦定理时易忘比值还等于2R.五.平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。41.数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.已知实数,且,则a=c,但在向量的数量积中没有.在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.42.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充
18、分条件。六.解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。45.直线的倾斜角、到的角、与的夹角的取值范围依次是。46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?47.对不重合的两条直线(建议在解题时,讨论后利用斜率和截距)48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。49.解决线性规划问题的基本步骤是什么?请你注意解题格式和完整的文字表达.(设出变量,写出目标函数写出线性约束条
19、件画出可行域作出目标函数对应的系列平行线,找到并求出最优解应用题一定要有答。)50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交
20、点,弦长,中点,斜率,对称,存在性问题都在下进行).55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?七.立体几何56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?线线平行、线面平行、面面平行这三者之间的联系和转化在解决立几问题中的应用是怎样的?每种平行之间转换的条件是什么?58.三垂线定理及其逆定理你记住了吗?你知道三垂线定理的关键是什么吗?(一面、四线、三垂直、立柱即面的垂线是关键)一面四直线,立柱是关键,垂直三处见59.线面平行的判定定理和性质定理在应用时都是三个条件,但
21、这三个条件易混为一谈;面面平行的判定定理易把条件错误地记为”一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”而导致证明过程跨步太大.60.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90,那么就不要忘了还有一种求角的方法即用证明它们垂直的方法.61.异面直线所成角利用“平移法”求解时,一定要注意平移后所得角等于所求角(或其补角),特别是题目告诉异面直线所成角,应用时一定要从题意出发,是用锐角还是其补角,还是两种情况都有可能。62.你知道公式:和中每一字母的意思吗?能够熟练地应用它们解题吗?63.两条异面直线所成的角的范围:090直线与平面所成的角的范围:0o90二面角的平面角的取值范围:018064.你知道异面直线上两点间的距离公式如何运用吗?65.平面图形的翻折,立体图形的展开等一类问题,要注意翻折,展开前后有关几何元素的“不变量”与“不变性”。66.立几问题的求解分为“作”,“证”,“算”三个环节,你是否只注重了“作”,“算”,而忽视了“证”这一重要环节?67.棱柱及其性质、平行六面体与长方体及其性质.这些知识你掌握了吗?(注意运用向量的方法解题)68.球及其性质;经纬度定义易混.经度为二面角,纬度为线面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医药工业中的智能质量控制与过程参数优化考核试卷
- 售后服务体系提高客户满意度和忠诚度考核试卷
- 拓宽专业技术视野的培训课程考核试卷
- 低温仓储人员住宿管理考核试卷
- 宠物绘画和艺术创作考核试卷
- 市场需求与数字化渠道优势发挥考核试卷
- 建筑施工安全防护设备与器材介绍考核试卷
- 制糖企业市场风险与市场监测考核试卷
- 炼铁行业的智能制造与自动化技术考核试卷
- 品质磨炼韧性篇-2023年中考语文写作导写专练
- 参观河南省博物院
- 初中七年级上册综合实践活动 低碳生活从我做起 教学设计
- 八年级生物上册知识点总结(填空版+答案)
- 2024-2030年中国会计师事务所行业深度分析及发展前景与发展战略研究报告
- 2024年国有企业新质生产力调研报告
- 2024年国家开放大学电大开放英语考试题题库
- 2024年国家开放大学电大《金融学》形考任务答案
- 2022版义务教育(历史)课程标准(附课标解读)
- DL∕T 5782-2018 20kV及以下配电网工程后评价导则
- 《 大学生军事理论教程》全套教学课件
- 第四单元整体教学设计【大单元教学】2024-2025学年八年级语文上册备课系列(统编版)
评论
0/150
提交评论