版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、绝密启用前 2018年普通高等学校招生全国统一考试(上海卷)数学试卷(满分150分,考试时间120分钟)考生注意1.本场考试时间120分钟,试卷共4页,满分150分,答题纸共2页.2.作答前,在答题纸正面填写姓名、准考证号,反面填写姓名,将核对后的条形码贴在答题纸指定位置.3.所有作答务必填涂或书写在答题纸上与试卷题号对应的区域,不得错位.在试卷上作答一律不得分.4.用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)1.行列式的值为_.2.双曲线的渐近线方程为_.3.在的二项展开式中,项的系数为_.(
2、结果用数值表示)4.设常数,函数。若的反函数的图像经过点,则_.5.已知复数满足(是虚数单位),则_.6.记等差数列的前项和为,若,则_.7.已知。若幂函数为奇函数,且在上递减,则_.8.在平面直角坐标系中,已知点,、是轴上的两个动点,且,则的最小值为_.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。从中随机选取三个,则这三个砝码的总质量为9克的概率是_.(结果用最简分数表示)10.设等比数列的通项公式为(),前项和为。若,则_.11.已知常数,函数的图像经过点、。若,则_.12.已知实数、满足:,则的最大值为_.二、选择题(本大题共有4题,满分20分,每题5分)
3、13.设是椭圆上的动点,则到该椭圆的两个焦点的距离之和为()(A)(B)(C)(D)14.已知,则“”是“”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件15.九章算术中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。设是正六棱柱的一条侧棱,如图。若阳马以该正六棱柱的顶点为顶点、以为底面矩形的一边,则这样的阳马的个数是()(A)(B)(C)(D)16.设是含数1的有限实数集,是定义在上的函数。若的图像绕原点逆时针旋转后与原图像重合,则在以下各项中,的可能取值只能是()(A)(B)(C)(D)三、解答题(本大题共有5题,满分76分)17.(本题满分14分
4、,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为,底面圆心为,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设,、是底面半径,且,为线段的中点,如图,求异面直线与所成的角的大小。18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数,函数。(1)若为偶函数,求的值;(2)若,求方程在区间上的解。19.(本题满分14分,第1小题满分6分,第2小题满分8分)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时。某地上班族中的成员仅以自驾或公交方式通勤。分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟)而公交群体的人均通勤时间不受影响
5、,恒为40分钟。试根据上述分析结果回答下列问题:(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义。20.(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)设常数,在平面直角坐标系中,已知点,直线:,曲线:(,),与轴交于点,与交于点。、分别是曲线与线段上的动点。(1)用表示点到点的距离;(2)设,线段的中点在直线上,求的面积;(3)设,是否存在以、为邻边的矩形,使得点在上?若存在,求点的坐标;若不存在,说明理由。21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3
6、小题满分8分)给定无穷数列,若无穷数列满足:对任意,都有,则称与“接近”。(1)设是首项为1,公比为的等比数列,。判断数列是否与接近,并说明理由;(2)设数列的前四项为:,是一个与接近的数列,记集合,求中元素的个数;(3)已知是公差为的等差数列。若存在数列满足:与接近,且在,中至少有100个为正数,求的取值范围。2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)考生应在答题纸的相应位置直接填写结果.1(4分)(2018上海)行列式的值为18【考点】OM:二阶行列式的定义菁优网版权所有【专题】11 :计算题;49 :综合
7、法;5R :矩阵和变换【分析】直接利用行列式的定义,计算求解即可【解答】解:行列式=4521=18故答案为:18【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查2(4分)(2018上海)双曲线y2=1的渐近线方程为【考点】KC:双曲线的性质菁优网版权所有【专题】11 :计算题【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程【解答】解:双曲线的a=2,b=1,焦点在x轴上 而双曲线的渐近线方程为y=双曲线的渐近线方程为y=故答案为:y=【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再
8、定量的解题思想3(4分)(2018上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示)【考点】DA:二项式定理菁优网版权所有【专题】38 :对应思想;4O:定义法;5P :二项式定理【分析】利用二项式展开式的通项公式求得展开式中x2的系数【解答】解:二项式(1+x)7展开式的通项公式为Tr+1=xr,令r=2,得展开式中x2的系数为=21故答案为:21【点评】本题考查了二项展开式的通项公式的应用问题,是基础题4(4分)(2018上海)设常数aR,函数f(x)=1og2(x+a)若f(x)的反函数的图象经过点(3,1),则a=7【考点】4R:反函数菁优网版权所有【专题】11
9、:计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a【解答】解:常数aR,函数f(x)=1og2(x+a)f(x)的反函数的图象经过点(3,1),函数f(x)=1og2(x+a)的图象经过点(1,3),log2(1+a)=3,解得a=7故答案为:7【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题5(4分)(2018上海)已知复数z满足(1+i)z=17i(i是虚数单位),则|z|=5【考点】A8:复数的模菁优网版权所有【专题】38 :对
10、应思想;4A :数学模型法;5N :数系的扩充和复数【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案【解答】解:由(1+i)z=17i,得,则|z|=故答案为:5【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题6(4分)(2018上海)记等差数列an的前n项和为Sn,若a3=0,a6+a7=14,则S7=14【考点】85:等差数列的前n项和菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列【分析】利用等差数列通项公式列出方程组,求出a1=4,d=2,由此能求出S7【解答】解:等差数列an的
11、前n项和为Sn,a3=0,a6+a7=14,解得a1=4,d=2,S7=7a1+=28+42=14故答案为:14【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题7(5分)(2018上海)已知2,1,1,2,3,若幂函数f(x)=x为奇函数,且在(0,+)上递减,则=1【考点】4U:幂函数的概念、解析式、定义域、值域菁优网版权所有【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用【分析】由幂函数f(x)=x为奇函数,且在(0,+)上递减,得到a是奇数,且a0,由此能求出a的值【解答】解:2,1,1
12、,2,3,幂函数f(x)=x为奇函数,且在(0,+)上递减,a是奇数,且a0,a=1故答案为:1【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题8(5分)(2018上海)在平面直角坐标系中,已知点A(1,0)、B(2,0),E、F是y轴上的两个动点,且|=2,则的最小值为3【考点】9O:平面向量数量积的性质及其运算菁优网版权所有【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用【分析】据题意可设E(0,a),F(0,b),从而得出|ab|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出
13、的最小值,同理将b=a+2带入,也可求出的最小值【解答】解:根据题意,设E(0,a),F(0,b);a=b+2,或b=a+2;且;当a=b+2时,;b2+2b2的最小值为;的最小值为3,同理求出b=a+2时,的最小值为3故答案为:3【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式9(5分)(2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示)【考点】CB:古典概型及其概率计算公式菁优网版权所有【专题】11 :计算题;34 :
14、方程思想;49 :综合法;5I :概率与统计【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:【点评】本题考查古典概型的概率的求法,是基本知识的考查10(5分)(2018上海)设等比数列an的通项公式为an=qn1(nN*),前n项和为Sn若=,则q=3【考点】8J:数列的极限
15、菁优网版权所有【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可【解答】解:等比数列an的通项公式为a=qn1(nN*),可得a1=1,因为=,所以数列的公比不是1,an+1=qn可得=,可得q=3故答案为:3【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查11(5分)(2018上海)已知常数a0,函数f(x)=的图象经过点P(p,),Q(q,)若2p+q=36pq,则a=6【考点】3A:函数的图象与图象
16、的变换菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用【分析】直接利用函数的关系式,利用恒等变换求出相应的a值【解答】解:函数f(x)=的图象经过点P(p,),Q(q,)则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a0,故:a=6故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用12(5分)(2018上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+【考点】7F:基本不等式及其应用;IT:点到直线的距离公式菁优网版权所有【专题】3
17、5 :转化思想;48 :分析法;59 :不等式的解法及应用【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y1=0的距离d1与d2之和,由两平行线的距离可得所求最大值【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且=11cosAOB=,即有AOB=60,即三角形OAB为等边三角形,AB=1,+的几何意义为点A
18、,B两点到直线x+y1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13(5分)(2018上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A2
19、B2C2D4【考点】K4:椭圆的性质菁优网版权所有【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2故选:C【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查14(5分)(2018上海)已知aR,则“a1”是“1”的()A充分非必要条件B必要非充分条件C充要条件D既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件菁优网版权所有【专题】
20、11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑【分析】“a1”“”,“”“a1或a0”,由此能求出结果【解答】解:aR,则“a1”“”,“”“a1或a0”,“a1”是“”的充分非必要条件故选:A【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题15(5分)(2018上海)九章算术中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A4B8C12D16【考点】D8:排列、组合的实际应用菁优网版权所
21、有【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合【分析】根据新定义和正六边形的性质可得答案【解答】解:根据正六边形的性质,则D1A1ABB1,D1A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有26=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题16(5分)(2018上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只
22、能是()ABCD0【考点】3A:函数的图象与图象的变换菁优网版权所有【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值【分析】直接利用定义函数的应用求出结果【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合我们可以通过代入和赋值的方法当f(1)=,0时,此时得到的圆心角为,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B故选:B【点评】本题考查的知识要点:定义性函数的应用三、解答题(本大题共有5题
23、,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17(14分)(2018上海)已知圆锥的顶点为P,底面圆心为O,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且AOB=90,M为线段AB的中点,如图求异面直线PM与OB所成的角的大小【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积菁优网版权所有【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积(2)以O
24、为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角【解答】解:(1)圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,圆锥的体积V=(2)PO=4,OA,OB是底面半径,且AOB=90,M为线段AB的中点,以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,4),=(0,2,0),设异面直线PM与OB所成的角为,则cos=arccos异面直线PM与OB所成的角的为arccos【点评】本题考查圆锥的体积的求法,考查异
25、面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题18(14分)(2018上海)设常数aR,函数f(x)=asin2x+2cos2x(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1在区间,上的解【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数菁优网版权所有【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出【解答】解:(1)f(x)=asin2x+2cos
26、2x,f(x)=asin2x+2cos2x,f(x)为偶函数,f(x)=f(x),asin2x+2cos2x=asin2x+2cos2x,2asin2x=0,a=0;(2)f()=+1,asin+2cos2()=a+1=+1,a=,f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,f(x)=1,2sin(2x+)+1=1,sin(2x+)=,2x+=+2k,或2x+=+2k,kZ,x=+k,或x=+k,kZ,x,x=或x=或x=或x=【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题19(14分)(2018上海)某群体的人均通勤时间,是
27、指单日内该群体中成员从居住地到工作地的平均用时某地上班族S中的成员仅以自驾或公交方式通勤分析显示:当S中x%(0 x100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义【考点】5B:分段函数的应用菁优网版权所有【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用【分析】(1)由题意知求出f(x)40时
28、x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义【解答】解;(1)由题意知,当30 x100时,f(x)=2x+9040,即x265x+9000,解得x20或x45,x(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0 x30时,g(x)=30 x%+40(1x%)=40;当30 x100时,g(x)=(2x+90)x%+40(1x%)=x+58;g(x)=;当0 x32.5时,g(x)单调递减;当32.5x100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自
29、驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力20(16分)(2018上海)设常数t2在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线:y2=8x(0 xt,y0)l与x轴交于点A、与交于点BP、Q分别是曲线与线段AB上的动点(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在上?若存在,求点P的坐标;若不存在,说明理由【考点】KN:直线与抛物线的位置关
30、系菁优网版权所有【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得AQP的面积;(3)设P及E点坐标,根据直线kPFkFQ=1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|=t+2,|BF|=t+2;方法二:由
31、题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,|AQ|=,Q(3,),设OQ的中点D,D(,),kQF=,则直线PF方程:y=(x2),联立,整理得:3x220 x+12=0,解得:x=,x=6(舍去),AQP的面积S=;(3)存在,设P(,y),E(,m),则kPF=,kFQ=,直线QF方程为y=(x2),yQ=(82)=,Q(8,),根据+=,则E(+6,),()2=8(+6),解得:y2=,存在以FP、FQ为邻边的矩形FPEQ,使得点E在上,且P(,)【点评】本题考查抛物线的性质,直线与
32、抛物线的位置关系,考查转化思想,计算能力,属于中档题21(18分)(2018上海)给定无穷数列an,若无穷数列bn满足:对任意nN*,都有|bnan|1,则称bn与an“接近”(1)设an是首项为1,公比为的等比数列,bn=an+1+1,nN*,判断数列bn是否与an接近,并说明理由;(2)设数列an的前四项为:a1=1,a2=2,a3=4,a4=8,bn是一个与an接近的数列,记集合M=x|x=bi,i=1,2,3,4,求M中元素的个数m;(3)已知an是公差为d的等差数列,若存在数列bn满足:bn与an接近,且在b2b1,b3b2,b201b200中至少有100个为正数,求d的取值范围【考
33、点】8M:等差数列与等比数列的综合菁优网版权所有【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得an1bnan+1,求得bi,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得an,讨论公差d0,d=0,2d0,d2,结合新定义“接近”,推理和运算,即可得到所求范围【解答】解:(1)数列bn与an接近理由:an是首项为1,公比为的等比数列,可得an=,bn=an+1+1=+1,则|bnan|=|+1|=11,nN*,可得数列bn与an接近;(2)bn是一个与an接近的
34、数列,可得an1bnan+1,数列an的前四项为:a1=1,a2=2,a3=4,a4=8,可得b10,2,b21,3,b33,5,b47,9,可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M=x|x=bi,i=1,2,3,4,M中元素的个数m=3或4;(3)an是公差为d的等差数列,若存在数列bn满足:bn与an接近,可得an=a1+(n1)d,若d0,取bn=an,可得bn+1bn=an+1an=d0,则b2b1,b3b2,b201b200中有200个正数,符合题意;若d=0,取bn=a1,则|bnan|=|a1a1|=1,nN*,可得bn+1bn=0,则b2
35、b1,b3b2,b201b200中有200个正数,符合题意;若2d0,可令b2n1=a2n11,b2n=a2n+1,则b2nb2n1=a2n+1(a2n11)=2+d0,则b2b1,b3b2,b201b200中恰有100个正数,符合题意;若d2,若存在数列bn满足:bn与an接近,即为an1bnan+1,an+11bn+1an+1+1,可得bn+1bnan+1+1(an1)=2+d0,b2b1,b3b2,b201b200中无正数,不符合题意综上可得,d的范围是(2,+)【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和
36、推理能力,属于难题一.集合与函数1.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否定形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原则.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间-a,a上单调递增,则一定存在反函数,且反函数也单调递增;但一个函
37、数存在反函数,此函数不一定单调.例如:.10.你熟练地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。13.如何应用函数的单调性与奇偶性解题?比较函数值的大小;解抽象函数不等式;求参数的范围(恒成立问题).这几种基本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易
38、忽略换元前后的等价性,易忽略参数的范围。17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的注意事项是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为基础,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是”.22.在求不等式的解集、定义域及值域时,其结果一
39、定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即ab0,a0.三.数列24.解决一些等比数列的前项和问题,你注意到要对公比及两种情况进行讨论了吗?25.在“已知,求”的问题中,你在利用公式时注意到了吗?(时,应有)需要验证,有些题目通项是分段函数。26.你知道存在的条件吗?(你理解数列、有穷数列、无穷数列的概念吗?你知道无穷数列的前项和与所有项的和的不同吗?什么样的无穷等比数列的所有项的和必定存在?27.数列单调性问题能否等同于对应函数的单调性问题?(数列是特殊函数,但其定义域中的值不是连续的。)28.应用数学
40、归纳法一要注意步骤齐全,二要注意从到过程中,先假设时成立,再结合一些数学方法用来证明时也成立。四. HYPERLINK /search.aspx t /content/19/1226/14/_blank 三角函数29.正角、负角、零角、象限角的概念你清楚吗?,若角的终边在坐标轴上,那它归哪个象限呢?你知道锐角与第一象限的角;终边相同的角和相等的角的区别吗?30.三角函数的定义及单位圆内的三角函数线(正弦线、余弦线、正切线)的定义你知道吗?31.在解三角问题时,你注意到正切函数、余切函数的定义域了吗?你注意到正弦函数、余弦函数的有界性了吗?32.你还记得三角化简的通性通法吗?(切割化弦、降幂公式
41、、用三角公式转化出现特殊角.异角化同角,异名化同名,高次化低次)33.反正弦、反余弦、反正切函数的取值范围分别是34.你还记得某些特殊角的三角函数值吗?35.掌握正弦函数、余弦函数及正切函数的图象和性质.你会写三角函数的单调区间吗?会写简单的三角不等式的解集吗?(要注意数形结合与书写规范,可别忘了),你是否清楚函数的图象可以由函数经过怎样的变换得到吗?36.函数的图象的平移,方程的平移以及点的平移公式易混:(1)函数的图象的平移为“左+右-,上+下-”;如函数的图象左移2个单位且下移3个单位得到的图象的解析式为,即.(2)方程表示的图形的平移为“左+右-,上-下+”;如直线左移2个个单位且下移
42、3个单位得到的图象的解析式为,即.(3)点的平移公式:点按向量平移到点,则.37.在三角函数中求一个角时,注意考虑两方面了吗?(先求出某一个三角函数值,再判定角的范围)38.形如的周期都是,但的周期为。39.正弦定理时易忘比值还等于2R.五.平面向量40.数0有区别,的模为数0,它不是没有方向,而是方向不定。可以看成与任意向量平行,但与任意向量都不垂直。41.数量积与两个实数乘积的区别:在实数中:若,且ab=0,则b=0,但在向量的数量积中,若,且,不能推出.已知实数,且,则a=c,但在向量的数量积中没有.在实数中有,但是在向量的数量积中,这是因为左边是与共线的向量,而右边是与共线的向量.42
43、.是向量与平行的充分而不必要条件,是向量和向量夹角为钝角的必要而不充分条件。六.解析几何43.在用点斜式、斜截式求直线的方程时,你是否注意到不存在的情况?44.用到角公式时,易将直线l1、l2的斜率k1、k2的顺序弄颠倒。45.直线的倾斜角、到的角、与的夹角的取值范围依次是。46.定比分点的坐标公式是什么?(起点,中点,分点以及值可要搞清),在利用定比分点解题时,你注意到了吗?47.对不重合的两条直线(建议在解题时,讨论后利用斜率和截距)48.直线在两坐标轴上的截距相等,直线方程可以理解为,但不要忘记当时,直线在两坐标轴上的截距都是0,亦为截距相等。49.解决线性规划问题的基本步骤是什么?请你
44、注意解题格式和完整的文字表达.(设出变量,写出目标函数写出线性约束条件画出可行域作出目标函数对应的系列平行线,找到并求出最优解应用题一定要有答。)50.三种圆锥曲线的定义、图形、标准方程、几何性质,椭圆与双曲线中的两个特征三角形你掌握了吗?51.圆、和椭圆的参数方程是怎样的?常用参数方程的方法解决哪一些问题?52.利用圆锥曲线第二定义解题时,你是否注意到定义中的定比前后项的顺序?如何利用第二定义推出圆锥曲线的焦半径公式?如何应用焦半径公式?53.通径是抛物线的所有焦点弦中最短的弦.(想一想在双曲线中的结论?)54.在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?椭圆,双曲线二次项系数为零时直线与其只有一个交点,判别式的限制.(求交点,弦长,中点,斜率,对称,存在性问题都在下进行).55.解析几何问题的求解中,平面几何知识利用了吗?题目中是否已经有坐标系了,是否需要建立直角坐标系?七
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关于金属材料服务协议合同模板
- 国内金融租赁合同金额
- 2024-2025学年新教材高中政治第2单元认识社会与价值选择第4课第1框人的认识从何而来练习含解析部编版必修4
- 脑梗死手术后病人的护理
- 2024热水工程合同书范本
- 2024ui设计外包文档ui设计外包合同范本
- 专题13 习作训练(讲义+试题) -2023年四升五语文暑假衔接课(统编版)
- 2024广告服务合同范本
- 2024建筑工程设计居间合同范本
- 2024建筑工程拆迁房屋合同格式工程
- 近代笛箫制作师承
- 空调系统设计规范及标准(全)
- 《社会医学》课件11健康危险因素评价
- DB34T 3826-2021 保温板外墙外保温工程技术标准 (1)
- 实验二、轴系结构设计实验
- 病原微生物实验室生物安全备案专家意见表
- 虫害控制培训完整版
- 高中音乐“歌唱”模块教学研修(一)
- 无阀滤池工作原理
- 钢结构厂房施工方案(屋面板及墙板)
- 杂交水稻种子越夏贮藏
评论
0/150
提交评论