版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2019届高考理科数学一轮复习优选教学设计:第27讲数系的扩大与复数的引入(含解析)2019届高考理科数学一轮复习优选教学设计:第27讲数系的扩大与复数的引入(含解析)9/92019届高考理科数学一轮复习优选教学设计:第27讲数系的扩大与复数的引入(含解析)第27讲数系的扩大与复数的引入考试说明1.理解复数的基本看法,理解复数相等的充要条件.2.认识复数的代数表示法及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对应的复数用代数形式表示.3.能进行复数代数形式的四则运算,认识两个详尽复数相加、相减的几何意义.考情解析考点观察方向考例观察热度复数的概看法的应用
2、2017全国卷3,念2013全国卷22017全国卷2,复数的几求复数对应的点的坐2016全国卷1,何意义标、模等2015全国卷1,2014全国卷22017全国卷1,2016全国卷2,复数的代求复数值、解复数方程2016全国卷2,数运算等2015全国卷2,2014全国卷2,2013全国卷2真题再现2017-2013课标全国真题再现1.2017全国卷设有下面四个命题p1:若复数z满足R,则zR;p2:若复数z满足z2R,则zR;p3:若复数z1,z2满足z1z2R,则z1=;p4:若复数zR,则R.其中的真命题为()A.p,p3B.p,p114C.p2,p3D.p2,p4解析B设z=a+bi(a,
3、bR).=,若R,则b=0,此时zR,故命题p为真命题;若zR,则b=0,此时1=a-biR,命题4为真命题;2222i,2R时,0或0,此时z为实数或纯虚数,命题p2为假命题.pz=a-b+abza=b=设1i,24i,则12R,但z1,命题p3为假命题.应选Bz=z=zz.2.2017全国卷=()A.1+2iB.1-2iC.2+iD.2-i解析D=2-i.3.2017全国卷设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.2解析C由题知z=i+1,则|z|=.4.2016全国卷设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A1B.C.D.2解析B由已知得x+x
4、i=1+yi,依照两复数相等的条件可得x=y=1,所以|x+yi|=|1+i|=.52016全国卷已知(3)(1)i在复平面内对应的点在第四象限,则实数的取值范围是.z=m+m-m()A.(-3,1)B.(-1,3)C.(1,+)D.(-,-3)解析A由题易知m+30,m-10,解得-3m1.6.2016全国卷若z=1+2i,则=()A.1B.-1C.iD.-i解析C=i.7.2015全国卷设复数z满足=i,则|z|=()A.1B.C.D.2解析A由=i,得z=i,所以=1.8.2015全国卷若a为实数,且(2+ai)(a-2i)=-4i,则a=()A.-1B.0C.1D.2解析B因为(2+a
5、i)(a-2i)=4a+(a2-4)i=-4i,所以4a=0,且a2-4=-4,解得a=0,应选B.9.2014全国卷=()A.1+iB.1-iC.-1+iD.-1-i解析D=-1-i.10.2014全国卷设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.-5B.5C.-4+iD.-4-i解析A由题知z2=-2+i,所以z1z2=(2+i)(-2+i)=i2-4=-5.11.2013全国卷若复数z满足(3-4i)z=|43i|,则z的虚部为()+A4B.-.-C.4D.解析Dz=+i,故z的虚部是.12.2013全国卷设复数z满足(1-i)z=2i,则z=()A
6、.-1+iB.-1-iC.1+iD.1-i解析A(1-i)z=2i,则z=i(1+i)=-1+i.应选A.2017-2016其他省份近似高考真题1.2017北京卷若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A.(-,1)B.(-,-1)C.(1,+)D.(-1,+)解析B(1-i)(a+i)=a+i-ai-i2=a+1+(1-a)i,其对应的点为(a+1,1-a),因为复数对应的点在第二象限,所以解得a-1,应选B.2.2017山东卷已知aR,i是虚数单位.若z=a+i,z=4,则a=()A.1或-1B.或-C.-D.解析A由z=a2+()2=a2+3=4,
7、得a2=1,所以a=1,应选A.3.2016山东卷若复数z满足2z+=3-2i,其中i为虚数单位,则z=()A.1+2iB.1-2iC.-1+2iD.-1-2i解析B设z=a+bi(a,bR).由题意得2a+2bi+a-bi=3-2i,得z=1-2i.4.2016四川卷设i为虚数单位,则(x+i)6的张开式中含x4的项为()A.-15x4B.15x4C.-20ix4D.20ix4解析A由题可知,含x4的项为x4i2=-15x4.52017天津卷已知aR,i为虚数单位,若为实数,则a的值为.答案-2解析=,为实数,20,即2+a=a=-.6.2016天津卷已知a,bR,i是虚数单位.若(1+i)
8、(1-bi)=a,则的值为.答案2解析(1+i)(1-bi)=a,即1+b+i-bi=a,解得=2.7.2016北京卷设aR,若复数(1+i)(a+i)在复平面内对应的点位于实轴上,则a=.答案-1解析复数(1+i)(a+i)=a-1+(a+1)i,因为其对应的点位于实轴上,所以a+1=0,解得a=-1.8.2016江苏卷复数z=(1+2i)(3-i),其中i为虚数单位,则z的实部是.答案5解析因为z=(1+2i)(3-i)=3+5i-2i2=5+5i,所以其实部为5.【课前双基牢固】知识聚焦1.(1)实部虚部b=0b0a=0且b0(2)a=c且b=d(3)a=c且b=-d(4)|z|a+bi
9、|2.3.(1)(a+c)+(b+d)i(a-c)+(b-d)i(ac-bd)+(ad+bc)i+i(2)z2+z1z1+(z2+z3)对点演练1.2解析z=a2-a-2+(a+1)i为纯虚数,解得a=2.2(-1,2)解析由题意可得-12.x0,-0,由此可得a的取值范围为a0,应选A.例3思路点拨(1)直接利用复数的乘法进行计算即可;(2)第一依照复数是纯虚数求得m的值,尔后再对第二个复数进行化简求解.(1)B(2)C解析(1)(1+i)(2+i)=2+i+2i+i2=1+3i.(2)因为(1+mi)(3+i)=(3-m)+(3m+1)i是纯虚数,所以m=3,则=3i,所以=3,应选C.变式题(1)D(2)C解析(1)=,应选D.(2)由题知z=i1,则|z|=.=+【备选原由】例1观察复数的看法与复数的运算;例2观察复数的几何意义;例3观察复数的运算、复数相等的条件、模的运算的综合.1配合例1使用2017河南夏邑第一中学模拟若复数(其中i为虚数单位,aR)为纯虚数,则a=()A.-2B.0C.1D.2解析D=-i,由题意得解得a=2,应选D.2配合例2使用2017武汉调研已知i是虚数单位,若复数z=在复平面内对应的点在直线2x-y=0上,则实数a=()A.1B.-1C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年牛津深圳中考英语语法专项练习定语从句和宾语从句
- 吉首大学《教学技能训练1》2021-2022学年第一学期期末试卷
- 吉首大学《抽样技术与应用》2021-2022学年第一学期期末试卷
- 《机床夹具设计》试卷23
- 吉林艺术学院《艺用人体解剖学》2021-2022学年第一学期期末试卷
- 吉林艺术学院《三维软件MAYA》2021-2022学年第一学期期末试卷
- 集体经济房屋分配协议书范本
- 协议书范文伪装通知书的效力
- 吉林师范大学《原动画技法》2021-2022学年第一学期期末试卷
- 城市拍档协议书范文范本
- 矿通风系统检测报告2
- 2024年中国石油招聘笔试参考题库含答案解析
- 临床康复学试题及答案
- 《研学旅行课程设计》课程标准
- CNAS-SC180:2023 食品安全管理体系认证机构认可方案
- 小学智力七巧板低中高各年级比赛试题
- 血常规考试题库含答案全套
- 2023年表彰大会运动员发言稿
- 十字头夹具设计说明书
- 气动人工肌肉系统的静动态特性分析
- 保安人员安全巡查记录表范本
评论
0/150
提交评论