版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教师备课札记第1课时 三角形的边一、学习目标:1认识三角形,能用符号语言表示三角形,并把三角形分类2知道三角形三边不等的关系3懂得判断三条线段能否构成一个三角形的方法,并能用于解决有关的问题二、重点与难点:重点:知道三角形三边不等关系难点: 判断三条线段能否构成一个三角形的方法三、前置铺垫:ABC回忆你所学过或知道的三角形的有关知识。四、探究新知:知识点一:三角形概念及分类1、学生自学课本63-64页探究之前内容,并完成下列问题:(1)三角形概念:由不在同一直线上的三条线段_所成的图形叫做三角形。如图,线段_、_、_是三角形的边;点A、B、C是三角形的_;_、_、_是相邻两边组成的角,叫做三角
2、形的内角,简称三角形的角。图中三角形记作_。(2)三角形按角分类可分为_、_、_。(3)三角形按边分类可分为 _ 三角形 _ABC _DEF(4)如图1,等腰三角形ABC中,AB=AC,腰是_,底是_,顶角指_,底角指_.等边三角形DEF是特殊的_三角形,DE=_=_.对应练习一: 图11、如图2下列图形中是三角形的有_? 图22、图3中有几个三角形?用符号表示这些三角形教师备课札记知识点二:知道三角形三边的不等关系,并判断三条线段能否构成三角形1、探究:请同学们画一个ABC,分别量出AB,BC,AC的长,并比较下列各式的大小:AB+BC_AC AB+ AC _ BC AC +BC _ AB
3、从中你可以得出结论:_。2、对应练习二:(1)下列长度的三条线段能否组成三角形?为什么? (1)3,4,8; (2)5,6,11; (3)5,6,10(2)有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是_个。(3)如果三角形的两边长分别是3和5,那么第三边长可能是( )A、1 B、9 C、3 D、103、阅读课本64页例题,仿照例题解法完成下面这个问题:仿例:一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长。五、达标练习:课本69页1、2题一个等腰三角形的两边长分别是2和5,则它的周长是( )A、7 B、9 C、1
4、2 D、9或123、若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为_.4、(选做)若ABC的三边长都是整数,周长为11,且有一边长为4,则这个三角形可能的最大边长是_.5、(选做)已知线段3cm,5cm,xcm,x为偶数,以3,5,x为边能组成_个三角形。六、课堂小结:本节课你学到了那些知识?七、作业 习题71第7题。第2课时 三角形的高,中线,与角平分线一、学习目标:1.认识并会画出三角形的高线,利用其解决相关问题;2.认识并会画出三角形的中线,利用其解决相关问题;3.认识并会画出三角形的角平分线,利用其解决相关问题;二、重点与难点:重点: 认识三角形的高线、中线与角平分
5、线,并会画出图形难点: 画出三角形的高线、中线与角平分线三、前置铺垫:1、三角形按边分可分为什么?按角分可分为什么?2、下列长度的三个线段能否组成三角形?(1)3,6,8 (2)1,2,3 (3)6,8,2四、新知探究:知识点一:认识并会画三角形的高线,利用其解决相关问题自学课本65页三角形的高并完成下列各题:1、作出下列三角形三边上的高:ACBACB2、上面第1图中,AD是ABC的边BC上的高,则ADC= = 3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于 点;(2)锐角三角形的三条高相交三角形的 ;(3)钝角三角形的三条高所在直线相交三角形的 ;(4)直角三角形的三条高相
6、交三角形的 ;(5)交点我们叫做三角形的垂心。4、对应练习:如图所示,画ABC的一边上的高,下列画法正确的是( ) 知识点二:认识并会画三角形的中线,利用其解决相关问题自学课本65页三角形的中线并完成下列各题:作出下列三角形三边上的中线ACBACB2、AD是ABC的边BC上的中线,则有BD = = ,3、由作图可得出如下结论:(1)三角形的三条中线相交于 点;(2)锐角三角形的三条中线相交三角形的 ;(3)钝角三角形的三条中线相交三角形的 ;(4)直角三角形的三条中线相交三角形的 ;(5)交点我们叫做三角形的重心。教师备课札记4、对应练习:如图,D、E是边AC的三等分点,图中有 个三角形,BD
7、是三角形 中 边上的中线,BE是三角形 中 边_上的中线;知识点三:认识并会画三角形的角平分线,利用其解决相关问题自学课本66页三角形的角平分线并完成下列各题:ACBACB1、作出下列三角形三角的角平分线:2、AD是ABC的BAC的角平分线,则BAD= = 3、由作图可得出如下结论:(1)三角形的三条角平分线相交于 点;(2)锐角三角形的三条角平分线相交三角形的 ;(3)钝角三角形的三条角平分线相交三角形的 ;(4)直角三角形的三条角平分线相交三角形的 ;(5)交点我们叫做三角形的内心。4、对应练习:如图,已知1=BAC,2 =3,则BAC的平分线为 ,ABC的平分线为 .总结:三角形的高、中
8、线、角平分线都是一条线段。五、达标练习:1课本69页第4题。1三角形的角平分线是( ) A直线 B射线 C线段 D以上都不对2下列说法:三角形的角平分线、中线、高线都是线段;直角三角形只有一条高线;三角形的中线可能在三角形的外部;三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有( ) A1个 B2个 C3个 D4个3.如图,AD是ABC的高,AE是ABC的角平分线,AF是ABC的中线,写出图中所有相等的角和相等的线段。5(选做)在ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm两部分,求三角形各边的长ABCACBDEF6.(选做)课本70页第8题六、课
9、堂小结:本节课你学到了那些知识?教师备课札记第3课时 三角形的稳定性一、学习目标:1认识三角形的稳定性,并会用其解决一些实际问题;2、通过练习进一步巩固三角形的边和相关线段。二、重点与难点:重点:三角形的稳定性 难点:三角形的稳定性的理解三、探究新知:知识点一:三角形的稳定性自学课本67-68页内容,回答下列问题:1、通过观察,你发现生活中哪些物体的结构是三角形?2、(1)如图1(1),将三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(2)如图1(2),将四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?由此我们可以验证哪些结论? 3、用什么方法能使这个不稳定的
10、四边形变得稳定呢?4、如图1(2),在四边形木架上再钉一木条,将它的一对顶点连接起来,然后扭动它,这对木架的形状还会改变吗? 5、如图4所示,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?6、想一想:在实际生活中还有哪些地方利用了“三角形的稳定性”来为我们服务?“四边形易变形”是优点还是缺点?生活中又有哪些应用?对应练习1. 如图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条,这样做的数学道理是 ;教师备课札记2. 下列图中哪些具有稳定性? 。123456 对不具稳定性的图形,请适当地添加线段,使之具有稳定性。_F_A_D_C_B
11、_E4、造房子的屋顶常用三角结构,从数学角度来看,是应用了_,而活动接架则应用了四边形的_。知识点二:通过练习进一步巩固三角形的边和相关线段1如图:(1)在ABC中,BC边上的高是_ (2)在AEC中,AE边上的高是_(3)在FEC中,EC边上的高是_(4)若AB=CD=2cm,AE=3cm,则 _,CE=_。2.以下列各组线段长为边,能组成三角形的是( )A.1cm,2cm,4cm; B.8cm,6cm,4cm C.12cm,5cm,6cm; D.2cm,3cm,6cmAOB3.已知等腰三角形的两边长分别为6cm和3cm,则该等腰三角形的周长是( )A.9cm B. 12cm C. 12cm
12、或15cm D. 15cm4.如图,为估计池塘岸边A、B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A、B间的距离ABDC不可能是( )A.20米 B.15米 C.10米 D.5米5、如图,点D是BC边上的中点,如果AB=3厘米,AC=4厘米,则ABD和ACD的周长之差为_,面积之差为_。四、课堂小结:本节课你学到了那些知识?五、课外作业课本70页第8题板书设计第4课时 与三角形有关的线段练习一、学习目标:通过练习进一步巩固三角形的边和相关线段。二、重点与难点:重点:巩固三角形的边和相关线段; 难点:三角形三边不等关系的运用三、知识点复习1、什么叫做三角形?2、三角形按
13、边可分为什么?按角可分为什么?3、三角形三边不等关系是什么?4、三角形的高、中线、角平分线各有什么特征?5、三角形具有_性,四边形具有_性。四、达标检测:1.如图1,图中所有三角形的个数为 ,在ABE中,AE所对的角是 ,ABC所对的边是 ,在ADE中,AD是 的对边,在ADC中,AD是 的对边;2.如图2,已知1=BAC,2 =3,则BAC的平分线为 ,ABC的平分线为 ;ACA3.如图3,D、E是边AC的三等分点,图中有 个三角形,BD是三角形 中 边上的中线,BE是三角形 中 边上的中线;ABCCBDDDEEEB123 图1 图2 图34.若等腰三角形的两边长分别为7和8,则其周长为 ;
14、若两边长分别为4和8,则其周长为_.5. 如右图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB、CD),这样做的数学道理是 ;6. 一个三角形的三边之比为234,周长为36cm,则此三角形三边的长分别为_.7.已知ABC中,AD为BC边上的中线,AB=10cm,AC=6cm,则ABD与ACD的周长之差为_.7如右图,图中共有三角形 ( ) A、4个 B、5个 C、6个 D、8个8.下列长度的三条线段中,能组成三角形的是 ( )3cm,5cm ,8cm B、8cm,8cm,18cmC、0.1cm,0.1cm,0.1cm D、3cm,40cm,8cm 9.如果
15、线段a,b,c能组成三角形,那么,它们的长度比可能是 ( ) A、124 B、134 C、347 D、23410.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为 ( )A、5 B、6 C、7 D、8ABCCCBBAA11.如图,分别画出三角形过顶点A的中线、角平分线和高。12.已知:ABC的周长为48cm,最大边与最小边之差为14cm,另一边与最小边之和为25cm,求:ABC的各边的长。13. 已知等腰三角形的一边等于8cm,另一边等于6cm,求此三角形的周长; 已知等腰三角形的一边等于5cm,另一边等于2cm,求此三角形的周长。14.在ABC中AB=AC,AC上的中线BD把
16、三角形的周长分为24cm和30cm的两个部分,求三角形的三边长。 15.【探究】如图,在ABC中,若AD是BC边上的中线,则有BD = = ,若过A点作BC边上的高AE,利用三角形的面积公式可求得SABD= =SABC,请你任意画一个三角形,将这个三角形的面积四等分。教师备课札记第5课时 三角形的内角一、教学目标1.经历实验活动的过程,得出三角形的内角和定理,能用平行线的性质推出这一定理2.能应用三角形内角和定理解决一些简单的实际问题二、重点与难点:重点:三角形内角和定理难点:三角形内角和定理的推理的过程三、课前准备每个学生准备好二个由硬纸片剪出的三角形四、探究新知(一)知识点一:探究三角形的
17、内角和定理1、自学课本72-73页内容,利用手中的硬纸片运用拼合法探究三角形的内角和。(1)在所准备的三角形硬纸片上标出三个内角的编码(2)叫几名同学到黑板运用不同的方法粘贴演示。(3)由拼合过程你能想出证明三角形内角和等于180的方法吗?2、证明三角形的内角和定理(1)阅读课本73页证明过程。(2)仿照课本证明过程选择下面的任意一个图形中辅助线的做法,完成证明。ABCDEABCE 图一 图二归纳:(1)三角形的内角和等于180。 (2)证明是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程。教师备课札记(二)知识点二:应用三角形内角和定理解决简单的实际问题1、填空:(1)
18、在ABC中,A = 60B = 30,则C = ;(2)三角形的三个内角之比为135,那么这个三角形的最大内角为 ;(3)在ABC中,A =B = 4C,则C = ;(4)在ABC中,A = 40,B =C,则B = ;2、例:如图,C岛在A岛的北偏东方向,B岛在A岛的北偏东方向,C岛在B岛的北偏西方向,从C岛看A、B两岛的视角是多少度? 五、达标练习:1、判断:(1) 三角形中最大的角是,那么这个三角形是锐角三角形( )(2) 一个三角形中最多只有一个钝角或直角( )(3)一个等腰三角形一定是锐角三角形( )(4) 一个三角形最少有一个角不大于( )2、课本76页习题7.1第1、2题3、课本
19、74页练习1、2六、课堂小结:本节课你学到了什么?七、作业:课本76页习题7.1第3、4题板书设计教师备课札记第6课时 三角形的外角一、学习目标:1认识三角形的外角;2知道三角形的外角的两个性质;3能利用三角形的外角性质解决实际问题。二、重点与难点:重点:三角形外角的两个性质; 难点:三角形的外角性质的证明三、铺垫回顾:三角形的内角和是多少?2ABC中,A=50,B=60,则C=_3.ABC中,A:B:C=1:2:2,则A=_,B=_,C=_四、新知探究:(一)知识点一:三角形外角的定义1、自学课本74页第一段理解三角形的外角的定义。2、任意画一个三角形,并画出三角形的外角。像这样,三角形的一
20、边与_组成的角,叫做三角形的外角。 3、找出右图中的外角 。4、一个三角形有几个外角? 。(二)知识点二:三角形外角的两个性质1、探究外角的性质(1)如图9,ABC中,A=70,B=60ACD是ABC的一个外角能由A,B求出ACD吗?如果能,ACD与A,B有什么关系?(2)你能进一步说明任意一个三角形的一个外角与它不相邻的两个内角有什么关系呢?并说明理由?结论:_理由:教师备课札记(3)外角与其中一个不相邻的内角之间的关系呢?结论:_理由2、对应练习(1) 课本75页练习(2)在ABC中,B=50,C的外角等于100,则A=_(3) 如右图所示,则a=_3、自学课本75页例2从中你会发现什么结
21、论?结论:_.五、达标练习1若三角形的外角中有一个是锐角,则这个三角形是_三角形2ABC中,若C-B=A,则ABC的外角中最小的角是_(填“锐角”、“直角”或“钝角”)3如图1,x=_ (1) (2) (3)4如图2,ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则1,2,3的大小关系是_5如图3,在ABC中,AE是角平分线,且B=52,C=78,求AEB的度数6如图所示,AEBD,1=95,2=28,求C六、课堂小结:通过本节课学习,你有什么收获?七、作业:课本76页习题7.2第5、6题板书设计教师备课札记第7课时 多边形一、学习目标:1知道多边形、多边形的内角、
22、多边形的外角、多边形的对角线和正多边形的有关概念2能够解决与多边形的对角线有关的问题二、重点与难点:重点:多边形的相关概念; 难点:多边形对角线三、新知探究:(一)知识点一:多边形、多边形的内角、多边形的外角、多边形的对角线和正多边形的有关概念1、自学课本79-80页,完成下列问题:(1)在平面内,由一些线段_相接组成的_叫做多边形。图1中分别是什么多边形?(2)多边形_组成的角叫做多边形的内角。图2中内角有_。(3)多边形的边与它的的邻边的_组成的角叫做多边形的外角。图2中外角有_。(4)连接多边形_的两个顶点的线段叫做多边形的对角线。(5)_都相等,_都相等的多边形叫做正多边形。2、对应练
23、习(1)n边形有_条边,_个顶点,_个内角。(2)图3是_边形,它的边是_,顶点是_,内角是_,若图中多边形是正多边形,则_。(3)下列图形不是凸多边形的是( ) (二)知识点二:解决与多边形的对角线有关的问题1、探究:画出下列多边形的对角线回答问题:教师备课札记(1)从四边形的一个顶点出发可以画_条对角线,把四边形分成了 个三角形;四边形共有_条对角线(2)从五边形的一个顶点出发可以画_条对角线,把五边形分成了 个三角形;五边形共有_条对角线(3)从六边形的一个顶点出发可以画_条对角线,把六边形分成了 个三角形;六边形共有_条对角线(4)猜想:从100边形的一个顶点出发可以画_条对角线,把1
24、00边形分成了 个三角形;100边形共有_条对角线从n边形的一个顶点出发可以画_条对角线,把n分成了 个三角形;n边形共有_条对角线2、对应练习:(1)从n边形的一个顶点出发可作_条对角线,从n边形n个顶点出发可作_条对角线,除去重复作的对角线,则n边形的对角线的总数为_条(2)过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有2条对角线,则(m-k)=_(3)过十边形的一个顶点可作出几条对角线?把十边形分成了几个三角形?(4)十二边形共有 条对角线,过一个顶点可作 条对角线,可把十二边形分成 个三角形。四、达标练习1、课本81页练习2、下列图形中,是正多边形的是( )A直角三角形 B
25、等腰三角形 C长方形 D正方形3、九边形的对角线有( )A25条 B31条 C27条 D30条过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是_。一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数。五、课堂小结:通过本节课学习,你有什么收获?六、作业:课本84页习题7.3第1题板书设计第8课时 多边形的内角和一、学习目标: 1知道多边形的内角和与外角和定理; 2运用多边形内角和与外角和定理进行有关的计算二、重点与难点:重点:多边形的内角和与外角和定理; 难点:内角和定理的推导三、课前铺垫:1.三角形的内角和是多少? 。2.正方形、长方形的内角和是多少?
26、3.从n边形的一个顶点出发可以画_条对角线,把n分成了 个三角形;四、探究新知:知识点一:多边形的内角和定理探究1:任意画一个四边形,量出它的4个内角,计算它们的和再画几个四边形,量一量、算一算你能得出什么结论? 能否利用三角形内角和等于180得出这个结论?结论: 。探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,请填空:(1)从五边形的一个顶点出发,可以引_条对角线,它们将五边形分为_个三角形,五边形的内角和等于180_(2)从六边形的一个顶点出发,可以引_条对角线,它们将六边形分为_个三角形,六边形的内角和等于180_探究3:一般地,怎样求n边形的内角和呢?请填空
27、: 从n边形的一个顶点出发,可以引_条对角线,它们将n边形分为_个三角形,n边形的内角和等于180_结论:多边形的内角和与边数的关系是 。对应练习: 1十二边形的内角和是_2一个多边形的内角和等于900,求它的边数教师备课札记3.课本83页练习。知识点二:多边形的外角和探究4:如图8,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?问题:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?因此可得结论: .对应练习:七边形的外角和是_;十二边形的外角和是_;三角形的外角和是_。一个多边形的每一个外角都等于36则这个多边形是_边形。在每个内角都相
28、等的多边形中,若一个外角是它相邻内角的,则这个多边形是_边形。五、达标练习:1、一个多边形的每一个外角都等于40,则它的边数是_;一个多边形的每一个内角都等于140,则它的边数是_。2、如果四边形有一个角是直角,另外三个角的度数之比为2:3:4,那么这三个内角的度数分别为_。3、若一个多边形的内角和为1080,则它的边数是_。4、当一个多边形的边数增加1时,它的内角和增加_度。3、 正十边形的一个外角为_4、_边形的内角和与外角和相等5、已知一个多边形的内角和与外角和的差为1080,则这个多边形是_边形6、若一个多边形的内角和与外角和的比为7:2,求这个多边形的边数。六、课堂小结:通过本节课学习,你有什么收获?七、作业:课本84页习题7.3第2、3题板书设计教师备课札记第9课时 镶嵌一、学习目标:1知道平面图形的镶嵌,弄清多边形镶嵌的条件 2通过探究多边形镶嵌的过程,发展学生的动手能力,合情推理能力,合作能力等 二、重点与难点:重点:平面图形的镶嵌 难点:多边形镶嵌的条件三、前置铺垫:1、多边形的内角和怎样计算?2、多边形的外角和是多少度?四、探究新知:(一)知识点一:镶嵌定义用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的密铺
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年体育赛事临时租场合同
- 2024灯光亮化工程设计合同
- 2024年度劳务派遣服务合同(安装工人)
- 2024年建筑工程劳务分包协议书
- 深海剪影课件教学课件
- 2024年幕墙工程质量保修合同
- 2024年度新能源技术研发与转让合同
- 2024年度房产市场监管合同:不动产市场调控配合
- 2024年度观白活力中心房地产项目环境影响评估合同
- 2024年度塔吊配件采购供应合同
- 第4章《一元一次方程》-2024-2025学年七年级数学上册单元测试卷(苏科版2024新教材)
- DB3502T 148-2024中小型水库生产运行标准化管理规程
- 公司组织机构管理制度
- 预习-21《蝉》导学案
- 四年级数学上册 第4章《运算律》单元测评必刷卷(北师大版)
- 期中测试卷(试题)-2024-2025学年数学五年级上册北师大版
- 2023年医疗器械经营质量管理制度
- 教学能力大赛“教案”【决赛获奖】-
- 诺贝尔奖介绍-英文幻灯片课件
- 球墨铸铁管、钢管顶管穿路施工方案
- GB/T 44672-2024体外诊断医疗器械建立校准品和人体样品赋值计量溯源性的国际一致化方案的要求
评论
0/150
提交评论