![2022年光刻胶行业市场规模及发展启示研究_第1页](http://file4.renrendoc.com/view/28f99b02c27db536b4c120edac251f41/28f99b02c27db536b4c120edac251f411.gif)
![2022年光刻胶行业市场规模及发展启示研究_第2页](http://file4.renrendoc.com/view/28f99b02c27db536b4c120edac251f41/28f99b02c27db536b4c120edac251f412.gif)
![2022年光刻胶行业市场规模及发展启示研究_第3页](http://file4.renrendoc.com/view/28f99b02c27db536b4c120edac251f41/28f99b02c27db536b4c120edac251f413.gif)
![2022年光刻胶行业市场规模及发展启示研究_第4页](http://file4.renrendoc.com/view/28f99b02c27db536b4c120edac251f41/28f99b02c27db536b4c120edac251f414.gif)
![2022年光刻胶行业市场规模及发展启示研究_第5页](http://file4.renrendoc.com/view/28f99b02c27db536b4c120edac251f41/28f99b02c27db536b4c120edac251f415.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022年光刻胶行业市场规模及发展启示研究1.光刻胶工作原理及分类光刻胶做为半导体生产中光刻工艺的核心材料,其主要工作原理是:光刻工艺利用光刻 胶对于各种特殊射线及辐射的反应原理,将事先制备在掩模上的图形转印到晶圆,建立 图形的工艺,使硅片表面曝光完成设计路的电路图,做到分辨率清晰和定位无偏差电路, 就如同建筑物一楼的砖块砌起来和二楼的砖块要对准,叠加的层数越高,技术难度大。 从光刻胶的发展历程看,20 世纪 50 年代至今,光刻技术经历了紫外全谱(300- 340nm),G线(436nm),I线(365nm),深紫外(Deep Ultraviolet,DUV,248nm和 193nm),以及
2、目前最引人注目的极紫外(EUV,13.5nm)光刻,电子束光刻等六个阶 段,随着光刻技术发展,各曝光波长的光刻胶组分(成膜树脂、感光剂和添加剂等)也 随之变化。根据反应机理和显影原理,可以将光刻胶分为正性光刻胶和负性光刻胶。正性光刻胶形 成的图形与掩膜版(光罩)相同,负性光刻胶显影时形成的图形与掩膜版相反。根据感 光树脂的化学结构,光刻胶可分为光聚合型,光分解型和光交联型。根据应用领域,光 刻胶可以分为 PCB 光刻胶、面板光刻胶和半导体光刻胶。从组成成分来看,光刻胶主要由成膜树脂、光敏物质、溶剂和助剂组成。其中,成膜树脂是光刻胶的主要成分。树脂:光刻胶的主要原料,具备光敏性和能力敏感的特殊聚
3、合物,一般是由碳、氢 和氧组成的大分子。经光照后在曝光区能很快地发生固化反应,溶解性、亲和性等 发生明显变化,用适当的溶剂处理就可以得到图像。随着制程的提升、曝光波长的 缩小,光刻胶中树脂的成本不断提升,对光刻胶的性能有重要影响。CAR 作用原理:在感光组成物中加入光致产酸剂,光致产酸剂(Photoacid Generator,PAG) 在光照射下生成酸,酸作为催化剂催化光刻胶树脂发生反应, 通过化学方法将光学信号进行放大,解决光刻胶的感光效率问题。同时,使用聚对 羟基苯乙烯作为主要的成膜树脂,解决了在 248 nm 波长下的透光性的问题。缺点: 曝光中产生酸,容易污染镜头,并且后烘过程中产生
4、的 H + 扩散造成线边粗糙度的 增加。g 线/i 线光刻胶:主要用酚醛树脂和重氮萘醌体系,酚醛树脂为成膜树脂、重氮萘 醌为感光剂,曝光后二者反应的部分易于溶于显影剂被去除。添加剂:在正型 i-线 光刻胶中加入添加剂可以提高抗刻蚀性能、感光性能等。KrF 光刻胶:光源强度大大降低,对光刻胶敏感性提出极高要求,IBM 通过化学放 大光刻胶(Chemically Amplified Resists,CARs,也叫化学增幅胶),提高光刻胶感 光度。ArF 光刻胶:聚甲基丙烯酸酯类型的光刻胶,随着光刻制程不断降低,光刻胶的胶 膜厚度也需要不断下降,尤其是在 193 nm 光刻工艺基础上,发展了 193
5、 nm 浸没 式光刻以及多重曝光的技术以提升光刻胶的分辨率,这使得光刻胶的抗刻蚀性能需 要进一步提升(聚甲基丙烯酸酯类型的光刻胶抗腐蚀性能低)。2.光刻胶市场规模分析行业壁垒高耸,研发能力要求极高,资金需求巨大。在上述我们也对众多光刻胶进行 了简单的分类,但实际操作中由于各个客户的产品的要求不同,对应的光刻胶的具体需 求料号众多。这一点将会直接导致光刻胶企业在生产制作光刻胶的时候需要具备足够的 配方研发能力,对众多国内仍在起步的厂商无疑是个巨大的挑战。另一方面由于光刻胶 最终需要应用在光刻机上,以 ASML 为例,EUV 光刻机常年保持在 1 亿欧元左右, 248nm 的 KrF 光刻机也基本
6、维持在一千万欧元以上。从光刻胶全球市场来看,根据 Cision,2019 年约有 91 亿美元的市场规模,至 2022 年 预计将达到 105 亿美元,实现复合增长 5%。而其中半导体、LCD、PCB 这三类主要的 应用场景分别占据了市场空间的 24.1%、26.6%、及 24.5%,分别对应 2019 年的市场 规模 22 亿美元、24 亿美元、及 22 亿美元。Cision 同时也统计了中国光刻胶市场的规模,在 2019 年约为 88 亿元人民币,至 2022 年预计将达到 117 亿元人民币,实现复合增长 15%。如若我们根据全球光刻胶的应用 场景分布来看,在中国大陆所需要的半导体、LC
7、D、及PCB的市场需求分别将达到21、 23、22 亿元人民币。 248nm及以上高端光刻胶为全球市场的主流。中国产业信息网的数据显示,2019年中 国光刻胶市场规模在 158 亿人民币,而其中半导体用光刻胶市场达到 20.7 亿人民币; 至 2020 年的预期,国内光刻胶市场有望达到 176 亿人民币,而半导体用光刻胶则将达 到 25 亿人民币,均将实现超过 10%的行业规模增长。而随着国内晶圆厂不断扩产,以 及制程和工艺的提高,有望在后续给光刻胶行业带来更大的增量空间。然而我们复盘过往中国半导体光刻胶市场规模来看,通过智研产业研究院的统计,在 2015 年中国半导体光刻胶市场规模仅为 10
8、 亿元左右,至 2020 年已经成功提高至约 25 亿人民币的市场规模。而其中的核心原因我们认为是中国半导体晶圆代工产业逐步完善, 晶圆厂产能持续增长带来的市场增长。而随着未来中国内地将要兴建更多的产能之时, 我们有望看到中国半导体光刻胶需求的持续高增长。虽然中国市场增速巨大,但是从产业端来看,全球共有 5 家主要的光刻胶生产企业。其 中,日本技术和生产规模占绝对优势。而其中在半导体光刻胶中,占据主导位置的还是 以日美两国为主。 国产光刻胶份额:受益于半导体、显示面板、PCB 产业东移的趋势,根据雅克科技,自 2011 年至今,光刻胶中国本土供应规模年华增长率达到 11%,高于全球平均 5%的
9、增 速。根据智研咨询,2019 年中国光刻胶市场本土企业销售规模约 70 亿元,全球占比约 10%,发展空间巨大。目前,中国本土光刻胶以 PCB 用光刻胶为主,平板显示、半导 体用光刻胶供应量占比极低。中国半导体光刻胶的占比仅有 2%,LCD 仅为 3%,而最 为简单 PCB 光刻胶占比高达 94%。整体来看,全球光刻胶行业主要被 JSR、东京应化、罗门哈斯、信越化学、及富士合理 占据,前五大家占据了全球光刻胶领域的 86%;如若聚焦到全球半导体用光刻胶领域, 前六大家(主要以日本为主)实现了对于市场的 87%的占据。国产半导体光刻胶的发展速度远远慢于其他产业,原因在于: 1、 光刻胶的验证周
10、期长。光刻胶批量测试的 过程需要占用晶圆厂机台的产线时间, 在产能紧张的时期测试时间将会被延长。测试的过程需要与光刻机、掩膜版及 半导体制程中的许多工艺步骤配合,需要付出的成本极高。通常面板光刻胶验 证周期为 1-2 年,半导体光刻胶验证周期为 2-3 年。但是验证通过之后便会形成 长期供应关系,甚至在未来会推动企业之间的联合研发。 2、 原材料成膜树脂具有专利壁垒。树脂的合成难度高,通常光刻胶厂商在合成一 种树脂后会申请相应的专利,目前树脂结构上的专利主要被日本公司占据。3、 光刻胶产品品类多,配方需要满足差异化需求。根据产品需求来调配适合的树 脂来满足差异化需求对于光刻胶企业是一大难点,也
11、是光刻胶制造商最核心的技术。以 TOK 为例,通过其产品系列可以看出,根据关键尺寸、应用层、正负 胶等划分,可以分为几十个系列。彤程新材持续推出新产品,KrF光刻胶方面, 公司产品种类涵盖 Poly、AA、Metal 等关键层工艺以及 TM/TV、Thick、Implant、 ContactHole 等应用领域,2021 年公司新增 21 支新产品通过客户验证并获得订 单,其中248nm光刻胶10支,I线光刻胶9支,LED及先进封装用光刻胶2支。3.复盘半导体光刻胶发展历程,我们总结出以下发展启示:1)光刻胶与工艺节点发展息息相关。光刻胶合成工艺的演进是基于制程的不断推进, 在研发过程中需要与
12、光刻机厂商密切合作。日本光刻胶从开始的模仿到在 KrF 胶实现超 越,背后是半导体产业链向日本转移、日本政府对半导体产业链的大力扶持和日本光刻 机厂商的崛起。当前背景下,先进节点技术开发速度有所放缓,国内半导体产业发展, 国产化需求为中国企业带来发展机遇。2)日本光刻胶巨头均起源于化工企业,本质上是早期光刻胶的底层技术和原材料与精 细化工的产物相同。TOK 最早切入,主要系本土客户培养本土供应链的需求;JSR 的切 入背景是 1970 年代石油危机下化工企业利润空间受到挤压,从而寻求第二增长曲线; 信越从硅化工业务切入是因为 1990s 日本国内经济衰退,公司基于原有主营业务寻求协 同发展。彤
13、程新材是全球最大的轮胎用特种材料供应商,生产和销售的轮胎用高性能酚 醛树脂产品在行业内处于全球领导者地位。电子级酚醛树脂对产品纯度要求非常高,在 KrF 光刻胶中,树脂占总成本的超过 70%,且在生产树脂中需要保证不同批次的高分子 树脂的分子量分布和性能都相差无几,故而成膜树脂的合成难度最高。目前彤程新材已 成功自主开发电子级酚醛树脂,在光刻胶、环氧塑封料、覆铜板等领域均有布局,并通 过部分客户的认证,开始批量供应。3)光刻胶公司与下游客户绑定紧密,同时布局光刻胶配套材料,客户粘性强。光刻胶 存在一定的先发优势,但技术壁垒并不至于无法突破,找到体系内符合要求的基团也可 实现突破。但光刻胶对半导
14、体生产过程的稳定性至关重要,验证周期长,下游客户不会 轻易更换。提升份额的途径在于打入客户新增产能供应链,以及配套材料的研发销售, 如 TOK 生产显影剂和边缘去除剂,JSR 生产底部抗反射涂料,信越生产石英掩模毛胚和 硅抗反射涂层。彤程新材 I 线光刻胶和 KrF 光刻胶以批量供应于中芯国际、华虹宏力、 长江存储、华力微电子、武汉新芯、华润上华等 13 家 12 寸客户和 17 家 8 寸客户,同 时公司 2 万吨光刻胶相关配套试剂项目,已进入洁净间及机电设备的安装高峰,预计 2022 年 6-7 月份能完成全部建设,将在下半年开始进入试生产。由贸易至上游制造,多元拓展丰富业务,打造平台型企业。彤程新材自 1999 年成立, 主要从事橡胶助剂商贸代理业务,在 2006 年逐步转型上游制造,且直至现在,公司已 经开拓了多个研发测试中心且投建多个国际化标准的生产基地;同时在 2019 年至今, 公司再次开拓电子材料业务及可降解材料业务,实现公司初步战略“一体两翼、三大业 务”的布局。 向上游延伸布局,研发实力及盈利能力齐升。公司当前积极布局光刻胶(IC+面板)上 游,自下而上的产业链整合一方面大幅提高公司光刻胶研发实力,还将提升公司利润水 平,实现卡脖子材料突破的同时盈利丰厚。电子材料、可降解材料、及汽车/轮胎特种 材料,彤程新
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年元器件测试仪器合作协议书
- 2025年硫精砂合作协议书
- 2025年农业科学研究与试验发展服务合作协议书
- 2025年二次加工材相关板材合作协议书
- 2024-2025学年四川省成都市崇州市四年级(上)期末数学试卷
- 2025年中国建设银行企业网上银行国际结算协议(2篇)
- 2025年亲属的股权转让协议范文(2篇)
- 2025年二手车带牌转让协议模板(2篇)
- 2025年个人自建房购房合同标准版本(2篇)
- 2025年五年级1班第一学期班主任工作总结模版(2篇)
- 全面新编部编版四年级下册语文教材解读分析
- 江苏农牧科技职业学院单招《职业技能测试》参考试题库(含答案)
- 三年级上册脱式计算100题及答案
- VDA6.3 2023过程审核教材
- 烹饪实训室安全隐患分析报告
- 《金属加工的基础》课件
- 运输行业春节安全生产培训 文明驾驶保平安
- 体验式沙盘-收获季节
- 老年护理陪护培训课件
- 2019年420联考《申论》真题(山西卷)试卷(乡镇卷)及答案
- 医院投诉纠纷及处理记录表
评论
0/150
提交评论