计量经济学课程设计论文_第1页
计量经济学课程设计论文_第2页
计量经济学课程设计论文_第3页
计量经济学课程设计论文_第4页
计量经济学课程设计论文_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、计量经济学课程设计第 页共28页目录 TOC o 1-5 h z HYPERLINK l bookmark2 o Current Document 1引言 2 HYPERLINK l bookmark4 o Current Document 1 .1 金融业简介2 HYPERLINK l bookmark6 o Current Document 1 .2课题的意义2 HYPERLINK l bookmark8 o Current Document .3课题的内容和任务2 HYPERLINK l bookmark10 o Current Document 2建立模型及多元回归 2. 1模型建立

2、3 HYPERLINK l bookmark12 o Current Document 2 . 2多元回归 4 HYPERLINK l bookmark24 o Current Document 3回归模型的检验和预测 5 HYPERLINK l bookmark26 o Current Document 经济意义上变量的检验 5 HYPERLINK l bookmark28 o Current Document 3.1.1拟合优度检验 5 HYPERLINK l bookmark32 o Current Document 3.1.2对方程的T检验 53.1.3 对方程的 F检验 6 HYPE

3、RLINK l bookmark50 o Current Document 3.2计量经济学检验 63.2.1多重共线性检验 6 HYPERLINK l bookmark70 o Current Document 3.2.2异方差性检验 15 HYPERLINK l bookmark120 o Current Document 3.2.3序列相关性检验 20 HYPERLINK l bookmark158 o Current Document 3.3滞后变量模型 26 HYPERLINK l bookmark174 o Current Document 3.4模型参数的检验 27 HYPERL

4、INK l bookmark176 o Current Document 点估计 27 HYPERLINK l bookmark182 o Current Document 3.4.2区间估计 27 HYPERLINK l bookmark196 o Current Document 3.5模型的预测 2829 HYPERLINK l bookmark198 o Current Document 结论 29参考文献1引言1.1金融业简介金融业指的是银行与相关资金合作社, 还有保险业,除了工业性的经济行为 外,其他的与经济相关的都是金融业。 金融业是指经营金融商品的特殊行业, 它 包括银行业、保

5、险业、信托业、证券业和租赁业。随着WTO来临以及IT技术的日益精进,金融业已是二十一世纪的朝阳行业,在国家整个国民经济中处于牵一 发而动全身的地位,行业运转是否良好, 事关经济发展和社会稳定,具有优化资 金配置和调节、反映、监督经济的作用。1.2课题的意义从整个经济市场的发展趋势出发, 考察了货币供应量、上市公司数量、股票 的发行量、股票筹资额等对我国金融业的影响。因此,通过研究这些货币供应量、上市公司数量、股票的发行量、股票筹资 额等对我国金融业的影响,推动我国金融业的一体化、综合化、网络化发展的进程,优化了金融资源的合理配置,提高了竞争能力,改进了金融服务,降低了经 营成本,增加了盈利,对

6、发展中国金融业的竞争实力有很大的帮助。1.3课题内容和任务本文将在经济理论的指导下,采用计量经济的方法,并借助于计量经济学软 件Eviews,对我国的货币供应量、上市公司数量、股票的发行量和股票筹资额 等对金融业进行初步的实证分析。2建立模型及多元回归表一 1993年到2010年金融业及其影响因素的数据统计 上市金融业总 资产(亿货币供应量(亿元)黄金储 备(万 盎司)外汇储备(亿美公司数量(个股票的发 行量(亿股票筹资额(亿元)年份元)丫X1X2元)X3)X4股)X5X619931669.74534879.81267211.9918395.79375.4719942234.84446923.

7、51267516.229191.26326.7819952798.50360750.51267735.9732331.6150.3219963211.68576094.912671050.2953086.11425.0819973606.76290995.312671398.9745267.631293.8219983697.667104498.512671449.59851109.06841.5219993816.459119897.912671546.75949122.93944.5620004086.686134610.312671655.741088512.042103.2420014

8、353.456158301.916082121.651160141.481252.3420024612.80118500719292864.071224291.74961.7520034989.396221222.819294032.511287281.431357.7520045392.97525410719296099.321377227.921510.9420056086.826298755.719298188.721381567.051882.5120068099.082345603.6192910663.414341287.775594.29200712337.55403442.21

9、92915282.491550637.2409868025475166.6192919460.31625180.293852.21200917767.53606225338923991.521718415.966124.69201020980.63725774.1338928473.382063928.3711971.932.1模型建立根据统计数据表一金融业总资产模型,首先建立下面的模型:YXX X、 X 5 X XYt01X1t 2X2t 3X3t 4X4t 5X5t 6X6tt其中Yt是金融业总资产,Xit是货币供应量,X2t是黄金储备,X3t是外汇储备,X4t是

10、上市公司数量,X5t是股票的发行量,X6t是股票筹资额,S是常数项, (j =1,2,3)是待估参数,随机干扰项。通过Eviews软件,得到上述模型的散点图:X2X3 -X4 -X5X6YX1图1散点图2.2多元回归对于多元回归模型的建立,应该满足以下基本假设:解释变量是非随机的或固定的,且相互之间互不相关,即无多重共 线性。随机干扰项具有零均值,同方差及不序列相关性,即E(7) =0,i =1,2,,n Var(7) = E(叫)*2,i =1,2,,nCov(7,j)二 E(7,U)=0,i = j,i, j =1,2,n解释变量与随机干扰项不相关,即Cov(Xji,7) =0,j =1,

11、2,,k,i =1,2,n随机干扰项满足正态分布叫 N(0,;2)样本容量趋于无穷时,各解释变量的方差趋于有界常数。回归模型的设定是正确的。再助于计量经济学软件Eview3.1,对数据进行最小二乘估计结果如图所示:Depe ndent Variable: YMethod: Least SquaresDate: 06/01/12 Time: 20:40Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X1-0.0301830.023155-1.3035140.2190

12、X21.2390301.0836631.1433720.2772X31.0099080.3629652.7823840.0178X43.2316081.9401841.6656190.1240X5-1.3816850.864258-1.5986950.1382X60.2730280.1223992.2306310.0475C897.54541102.4220.8141570.4328R-squared0.994299Mean depe ndent var6922.547Adjusted R-squared0.991189S.D.dependent var5673.176S.E. of regr

13、essi on532.5272Akaike info criteri on15.67845Sum squared resid3119438.Schwarz criteri on16.02470Log likelihood-134.1060F-statistic319.7300Durb in -Watson stat1.950283Prob(F-statistic)0.000000图2最小二乘估计的回归结果估计模型结果如下:Yt =897.5454-0.030183X!t 1.239030X2( 1.009908乂氏 3.231608X4t -1.381685乂戢 0.273028X&0.814

14、157? :i-1.3035141.1433722.7823841.665619-1.598695 ?2.2306312 2R =0.994299R =0.991189F =319.7300 S.E= 532.52723回归模型的检验和预测3.1经济意义上变量的检验3.1.1拟合优度检验从Eviews回归结果来看,模型拟合优度很好。R2 =0.9942993.1.2对方程的T检验1)对X1t进行检验提出原假设H0:Bj=O;备择假设 出:片式0 , ( j电 )|t |=1.303514假设显著水平口 =0.05查自由度为11to.025(18-6-1)=2.201 1.303514,故接受

15、H。,拒绝 H)对X2t进行检验提出原假设H。: =0;备择假设已:=0,( j假设显著水平a =0.05查自由度为11t.025(18-6-1)=2.201 =1.143372,故接受 H。,拒绝 H)对X3t进行检验提出原假设H。:打=0;备择假设 比:=0,( j假设显著水平a =0.05查自由度为11to25(18-6-1)=2.201 2.782384,故拒绝原假设 H。, 著的。4 )对X4t进行检验提出原假设H0: : j = 0;备择假设 出:j = 0, ( j假设显著水平a =0.05查自由度为11to.o25(18-6-1)=2.201 1.665619,故接受 H。,拒

16、绝 H5)对X5t进行检验提出原假设H。:打=0;备择假设比:打=0,( j假设显著水平口 =0.05查自由度为11to.o25(18-6-1)=2.201 1.598695,故接受 H。,拒绝 H6)X6t进行检验提出原假设Ho: 1 =0;备择假设H1j = 0,( j假设显著水平口 =0.05查自由度为11to25(1861)=2.201 2.230631,故拒绝原假设 H。, 著的。的分布表,得临界值 1,即变量X1t是不显著的。=3)|t |=1.143372的分布表,得临界值 !,即变量X2t是不显著的。=2)|t |=2.782384的分布表,得临界值接受H1,即变量Xgt是显=

17、2)|t |=1.665619的分布表,得临界值,即变量X4t是不显著的。=2)|t |=1.598695的分布表,得临界值I,即变量X5t是不显著的。=2)|t |=2.230631的分布表,得临界值接受H1,即变量X6t是显3.1.3对方程的F检验F =319.7300假设显著水平:=0.05,查自由度为6和11的F分布表,得 临界值Fo.o5(6,11) = 5.O7v319.73O0是显然的,故F统计量的值在给定显著性水平 下=0.05的情况下是显著的。3.2计量经济学检验3.2.1多重共线性检验 计量经济学中多重共线性产生的原因:1)经济变量相关的共同趋势;2)滞后变量的引入;3)样

18、本资料的限制。 多重共线性的后果有:1)完全共线性下参数估计量不存在;2)近似共线性下普通最小二乘法参数估计量的方差变大;3)参数估计量经济含义不合理;4)变量的显著性检验和模型的预测功能失去意义。克服多重共线性的方法:1)排除引起共线性的变量;2)差分法;3)减小参数估计量的方差。 多重共线性的检验:1)检验多重共线性是否存在;2)判明存在多重共线性的范围(判定系数检验法、逐步回归法)。下列用相关系数检验法检验解释变量的多重共线性,经过计算得到变量 之间的相关系数如图所示:Correlation MatrixX1X2X3X4X5 | X6X1X2X3X4X5|X&X1xi1.0000000.

19、9317630.9066290.8901150.6102590.052538X2X20.9317631 0000000 9028060 8111560.5288840.787882X3X30 9866290 9028061 0000000 8258620.5647830 896160X4X4Q8961150 3111560.0258621 0000000 &373420771061X5X50.6182590.5288840 5&47830.6373421.0000000.73&453X6X60.S925380.7078820.896160077106107394531.000000图3相关系数

20、矩阵由上图知,相关系数在0.90以上,这说明解释变量之间高度线性相关,即 存在比较严重的多重共线性,也是货币供应量X1t与黄金储备X2t与外汇储备X3t之间存在比较严重的多重共线性。由于多重共线性的存在,我们采用逐步回归法对模型进行修正:第一步:运用OLS方法逐一求Y对各个解释变量的回归:Depe ndent Variable: YMethod: Least SquaresDate: 06/01/11 Time: 12:41Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticP

21、rob.X10.0277570.00142619.457960.0000C226.6330442.09700.5126320.6152R-squared0.959454Mean depe ndent var6922.547Adjusted R-squared0.956920S.D.dependent var5673.176S.E. of regressi on1177.512Akaike info criteri on17.08463Sum squared resid22184563Schwarz criteri on17.18356Log likelihood-151.7617F-stati

22、stic378.6123Durb in -Watson stat0.445939Prob(F-statistic)0.000000图4兀回归1Depe ndent Variable: YMethod: Least SquaresDate: 06/01/11Time: 12:44Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X27.6611220.9543138.0278950.0000C-6707.8661805.727-3.7147730.0019R-squa

23、red0.801112Mean depe ndent var6922.547Adjusted R-squared0.788681S.D. dependent var5673.176S.E. of regressi on2607.928Akaike info criteri on18.67494Sum squared resid1.09E+08Schwarz criteri on18.77387Log likelihood-166.0744F-statistic64.44709Durb in -Watson stat1.097939Prob(F-statistic)0.000001图5 一元回归

24、2Depe ndent Variable: YMethod: Least SquaresDate: 06/01/11Time: 12:50Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X30.6394200.01799135.541580.0000C2313.649201.440511.485520.0000R-squared0.987492Mean depe ndent var6922.547Adjusted R-squared0.986710S.D.depe

25、ndent var5673.176S.E. of regressi on654.0047Akaike info criteri on15.90855Sum squared resid6843554.Schwarz criteri on16.00748Log likelihood-141.1769F-statistic1263.204Durb in -Watson stat0.563353Prob(F-statistic)0.000000图6 -兀回归3Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 21:26Samp

26、le: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X48.8941801.5049555.9099310.0000C-2850.6751825.260-1.5617910.1379R-squared0.685827Mean depe ndent var6922.547Adjusted R-squared0.666191S.D.dependent var5673.176S.E. of regressi on3277.747Akaike info criteri on19.13

27、214Sum squared resid1.72E+08Schwarz criteri on19.23107Log likelihood-170.1893F-statistic34.92728Durb in -Watson stat0.163517Prob(F-statistic)0.000022图7 一元回归4Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12 Time: 21:27Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Error

28、t-StatisticProb.X59.0563533.6031632.5134450.0230C3765.0641714.6892.1957720.0432R-squared0.283071Mean depe ndent var6922.547Adjusted R-squared0.238263S.D.dependent var5673.176S.E. of regressi on4951.410Akaike info criteri on19.95717Sum squared resid3.92E+08Schwarz criteri on20.05610Log likelihood-177

29、.6145F-statistic6.317406Durb in -Watson stat0.527980Prob(F-statistic)0.023042图8 -兀回归5Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 21:28Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X61.5534630.1879948.2633800.0000C2637.633793.43363.324328

30、0.0043R-squared0.810164Mean depe ndent var6922.547Adjusted R-squared0.798300S.D.dependent var5673.176S.E. of regressi on2547.883Akaike info criteri on18.62835Sum squared resid1.04E+08Schwarz criteri on18.72728Log likelihood-165.6552F-statistic68.28345Durb in -Watson stat1.520117Prob(F-statistic)0.00

31、0000图9一元回归6第二步:对比分析,根据调整后的可决系数R2最大的原则,选取X3t作为进入回归模型的第一个解释变量,形成一元回归。再将其余解释变量分别引入模型, 得到二元回归模型如下:Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 21:48Sample: 1993 2010In eluded observati ons: 18VariableCoeffieie ntStd. Errort-StatistieProb.X30.6614550.1138585.8094590.0000X1-0.0009840.005

32、014-0.1961510.8471C2392.089450.65265.3080540.0001R-squared0.987524Mean depe ndent var6922.547Adjusted R-squared0.985861S.D.dependent var5673.176S.E. of regressi on674.5885Akaike info eriteri on16.01709Sum squared resid6826045.Sehwarz eriteri on16.16549Log likelihood-141.1539F-statistie593.6649Durb i

33、n -Watson stat0.556224Prob(F-statistie)0.000000图10二元回归1Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 21:49Sample: 1993 2010In eluded observati ons: 18VariableCoeffieie ntStd. Errort-StatistieProb.X30.6459970.04316514.965650.0000X2-0.0968980.574197-0.1687540.8682C2438.645769.31033.16

34、99110.0063R-squared0.987516Mean depe ndent var6922.547Adjusted R-squared0.985851S.D.dependent var5673.176S.E. of regressi on674.8128Akaike info eriteri on16.01776Sum squared resid6830585.Sehwarz eriteri on16.16615Log likelihood-141.1598F-statistie593.2652Durb in -Watson stat0.556326Prob(F-statistie)

35、0.000000图11二元回归2Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 21:49Sample: 1993 2010In eluded observati ons: 18VariableCoeffieie ntStd. Errort-StatistieProb.X30.6269430.03272019.160600.0000X40.2521630.5461330.4617240.6509C2126.498454.94084.6742300.0003R-squared0.987667Mean depe nden

36、t var6922.547Adjusted R-squared0.986023S.D.dependent var5673.176S.E. of regressi on670.7037Akaike info eriteri on16.00554Sum squared resid6747652.Schwarz eriteri on16.15394Log likelihood-141.0499F-statistie600.6491Durb in -Watson stat0.565155Prob(F-statistie)0.000000图12二元回归3Depe ndent Variable: YMet

37、hod: Least SquaresDate: 06/03/12Time: 21:50Sample: 1993 2010In eluded observati ons: 18VariableCoeffieie ntStd. Errort-StatistieProb.X30.6550000.02135930.665750.0000X5-0.7297490.565033-1.2915150.2161C2455.775225.969210.867740.0000R-squared0.988744Mean depe ndent var6922.547Adjusted R-squared0.987243

38、S.D.dependent var5673.176S.E. of regressi on640.7653Akaike info eriteri on15.91422Sum squared resid6158702.Sehwarz eriteri on16.06261Log likelihood-140.2279F-statistie658.8057Durb in -Watson stat0.683607Prob(F-statistie)0.000000图13二元回归4Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 2

39、1:50Sample: 1993 2010In eluded observati ons: 18VariableCoeffieie ntStd. Errort-StatistieProb.X30.6114410.04109114.880290.0000X60.0837410.1102140.7598050.4591C2284.336207.768710.994610.0000R-squared0.987956Mean depe ndent var6922.547Adjusted R-squared0.986350S.D. dependent var5673.176S.E. of regress

40、i on662.8186Akaike info criteri on15.98189Sum squared resid6589928.Schwarz criteri on16.13029Log likelihood-140.8370F-statistic615.2046Durb in -Watson stat0.492248Prob(F-statistic)0.000000图14二元回归5第三步:再根据调整后的可决系数R2最大原则和参数显著性原则,选取X5t 作为进入回归模型的第二个解释变量,形成二元回归;根据上面选取解释变量的原则,继续进行逐步回归,使得调整后的可决系数R2最大和参数都显著,

41、如图15和图16,依次引入解释变量X6t和X4t,最后引入的解释变量X1t和X2t,虽然 也使调整后的可决系数有所增加,但是它们的参数都不显著,如图17和图18,故舍去X1t和X2t,所以最后得到的回归模型是图16。Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12 Time: 22:13Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X30.5794040.03665815.805490.0000X

42、5-1.7047920.639190-2.6671130.0184X60.2885670.1205312.3941360.0312C2544.661200.487712.692360.0000R-squared0.992014Mean depe ndent var6922.547Adjusted R-squared0.990302S.D. dependent var5673.176S.E. of regressi on558.6763Akaike info criteri on15.68215Sum squared resid4369669.Schwarz criteri on15.88001

43、Log likelihood-137.1393F-statistic579.6653Durb in -Watson stat0.743211Prob(F-statistic)0.000000图15引入X6t回归Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 22:18Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X30.5398840.04191812.879540.0000X5-2.

44、1129180.650296-3.2491660.0063X60.3179940.1149382.7666640.0160X40.7761050.4664001.6640330.1200C2037.833358.40485.6858440.0001R-squared0.993416Mean depe ndent var6922.547Adjusted R-squared0.991390S.D. dependent var5673.176S.E. of regressi on526.4076Akaike info criteri on15.60016Sum squared resid360236

45、4.Schwarz criteri on15.84749Log likelihood-135.4015F-statistic490.3750Durb in -Watson stat1.176105Prob(F-statistic)0.000000图16引入X4t回归Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 22:19Sample: 1993 2010In cluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X30.65715

46、80.1936423.3936770.0053X41.3643731.0608571.2861040.2227X5-1.9356580.724783-2.6706740.0204X60.2984130.1219002.4480100.0307X1-0.0064110.010322-0.6210900.5462C2084.834374.90125.5610220.0001R-squared0.993621Mean depe ndent var6922.547Adjusted R-squared0.990963S.D. dependent var5673.176S.E. of regressi o

47、n539.3027Akaike info criteri on15.67963Sum squared resid3490169.Schwarz criteri on15.97642Log likelihood-135.1167F-statistic373.8411Durb in -Watson stat1.172971Prob(F-statistic)0.000000图17引入X1t回归Depe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 22:20Sample: 1993 2010In eluded observati

48、ons: 18VariableCoeffieie ntStd. Errort-StatistieProb.X30.5418280.0544129.9579440.0000X40.7835420.5010631.5637610.1438X5-2.1104720.677984-3.1128620.0090X60.3168760.1210662.6173760.0225X2-0.0293360.490696-0.0597850.9533C2070.071655.65413.1572610.0083R-squared0.993418Mean depe ndent var6922.547Adjusted

49、 R-squared0.990676S.D. dependent var5673.176S.E. of regressi on547.8208Akaike info eriteri on15.71098Sum squared resid3601292.Schwarz eriteri on16.00777Log likelihood-135.3988F-statistie362.2317Durb in -Watson stat1.175479Prob(F-statistie)0.000000图18引入X2t回归3.2.2异方差性检验计量经济学中异方差性检验的后果有:1)参数估计量非有效;2)变量

50、的显著性检验失去意义;3)模型的预测失效。异方差性检验的方法有:1)图示检验法;300002000010000E2图19解释变量与残差平方 e2的散点图1200000-800000-600000-400000-200000800000-0600000400000200000 1A0-200000-4000009496980002080406-100000010ResidualActualFitted图20残差e2由图3解释变量与残差平方e2的散点图和图4残差e2的信息都表明可能不存在异方差。2)帕克(Park)检验与戈里瑟(Gleiser )检验;Depe ndent Variable: LO

51、G(E2)Method: Least SquaresDate: 06/03/12Time: 23:21Sample: 1993 2010In eluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.X3-5.01E-060.000138-0.0362770.9716X40.0004400.0015380.2862890.7792X50.0001560.0021440.0727840.9431X6-8.68E-050.000379-0.2290870.8224C10.973751.1817909.2857010.

52、0000R-squared0.014686Mean depe ndent var11.23634Adjusted R-squared-0.288487S.D.dependent var1.529145S.E. of regressi on1.735756Akaike info criteri on4.170897Sum squared resid39.16705Schwarz criteri on4.418222Log likelihood-32.53807F-statistic0.048442Durb in -Watson stat2.732721Prob(F-statistic)0.995

53、019图21 Park 检验给定显著水平a =0.05查自由度为13的分布表,得临界值 t.025(13) = 2.160|t|,所以不存在异方差。3)G-Q (Goldfeld-Quandt )检验;G-Q检验描述:将n =18组数据观察值按可能引起异方差的解释变量X1t的观察值进行升序排序;并将序列中间的c = n、4个观察值除去,并将剩下的观察值4划分为较小与较大的容量相同的两个子样本,每个子样样本容量均为口 = 7 ;4对每个子样分别进行OLS回归,并计算各自的残差平方和RSS和RSS。回归结果如下:Depe ndent Variable: YMethod: Least Squares

54、Date: 06/03/12 Time: 23:37Sample: 1993 1999In eluded observati ons: 7VariableCoefficie ntStd. Errort-StatisticProb.X60.1212410.2643580.4586260.6915X5-1.2946150.980986-1.3197080.3177X4-1.5312240.356560-4.2944300.0502X32.4535430.11857420.692110.0023C1503.48445.2998433.189610.0009R-squared0.999785Mean

55、depe ndent var3005.095Adjusted R-squared0.999354S.D.dependent var812.5859S.E. of regressi on20.65808Akaike info criteri on9.069898Sum squared resid853.5123Schwarz criteri on9.031263Log likelihood-26.74464F-statistic2320.366Durb in -Watson stat2.737001Prob(F-statistic)0.000431图 22 1993-1999年OLS回归结果De

56、pe ndent Variable: YMethod: Least SquaresDate: 06/03/12Time: 23:39Sample: 2004 2010In eluded observati ons: 7VariableCoefficie ntStd. Errort-StatisticProb.X60.2106030.0797682.6401900.1185X5-1.1856310.442025-2.6822750.1154X4-1.7521361.889538-0.9272830.4517X30.6954710.05015713.865960.0052C3392.3322207

57、.2601.5368970.2641R-squared0.999177Mean depe ndent var12218.26Adjusted R-squared0.997532S.D. dependent var5996.254S.E. of regressi on297.8897Akaike info criteri on14.40713Sum squared resid177476.5Schwarz criteri on14.36850Log likelihood-45.42496F-statistic607.2715Durb in -Watson stat3.192268Prob(F-s

58、tatistic)0.001645图 23 2004-2010年OLS回归结果计算样本1的残差平方和:RSS= 853.5123和样本2的残差平方和:RSS =177476.5给定显著性水平:=0.05,确定F分布表中的相应临界值 (2,2)=99.00 ;在同方差性假设下计算F的统计量:F二RS故表明存在RSS -z ss异方差。1)怀特(White)检验;White Heteroskedasticity Test:F-statistic1.362653Probability0.325854Obs*R-squared9.859796Probability0.275005Test Equati

59、 on:Dependent Variable: RESIDEMethod: Least SquaresDate: 06/03/12Time: 23:26Sample: 1993 2010In eluded observati ons: 18VariableCoefficie ntStd. Errort-StatisticProb.C345085.5360519.00.9571910.3635X6-39.10161220.9114-0.1770010.8634X6A2-0.0011700.016110-0.0725990.9437X51878.2541046.1631.7953740.1062X

60、5A2-1.3908590.645411-2.1549980.0596X4-1493.2521228.708-1.2153030.2552X4A20.9340780.8267491.1298210.2878X331.9191077.585730.4114040.6904X3A2-0.0025470.001827-1.3940790.1968R-squared0.547766Mean depe ndent var200131.4Adjusted R-squared0.145781S.D.dependent var281807.4S.E. of regressi on260457.5Akaike

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论