EEG-signal-processing-脑电信号处理方法算法_第1页
EEG-signal-processing-脑电信号处理方法算法_第2页
EEG-signal-processing-脑电信号处理方法算法_第3页
EEG-signal-processing-脑电信号处理方法算法_第4页
EEG-signal-processing-脑电信号处理方法算法_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、EEG SIGNAL PROCESSING第一页,共二十七页。EEG signal modelling1Available features2Classification algorithms3Independent Component Analysis4ContentSparse Representation5第二页,共二十七页。1EEG signal modellingBioelectricity 1Signal generation system2第三页,共二十七页。 bioelectricitySignal generation systemExcitation model第四页,共二

2、十七页。 signal generation systembioelectricityLinear Model第五页,共二十七页。 signal generation systembioelectricityNonlinear Model第六页,共二十七页。2Available featuresBasic features1Modern methods2第七页,共二十七页。Temporal Analysis Signal Segmentation: label the EEG signals by segments of similar characteristics. basic featu

3、resModern methods第八页,共二十七页。Temporal Criteria basic featuresModern methods第九页,共二十七页。Frequency AnalysisSuboptimal DFT, DCT, DWT;Optimal KLT (Karhunen-Love)Demerits: complete statistical information, no fast calculation. basic featuresModern methods第十页,共二十七页。Signal Parameter Estimation AR model: Merits

4、: Outperform DFT in frequency accuracy. Demerits: suffer from poor estimation of parameters. Improvements: accurate order & coefficients. modern methodsBasic features第十一页,共二十七页。AR coefficients estimation methodsYule-Walker aryule(x,p) Merits: Toeplitz matrix Levinson-Durbin, fastest! Demerits: with

5、window bad resolution of PSD modern methodsBasic features第十二页,共二十七页。AR coefficients estimation methodsCovariance method arcov(x,p), armcov(x,p) Merits: without window good resolution of PSD Demerits: slowBurg arburg(x,p) Merits: accurate approximation of PSD Demerits: line skewing & splitting modern

6、 methodsBasic features第十三页,共二十七页。 modern methodsBasic featuresComparison 第十四页,共二十七页。Principal Component AnalysisUse same concept as SVDDecompose data into uncorrelated orthogonal componentsAutocorrelation matrix is diagonalizedEach eigenvector represents a principal componentApplication decompositio

7、n, classification, filtering, denoising, whitening. modern methodsBasic features第十五页,共二十七页。3Sparse RepresentationSparse Approximation1Sparse Decomposition 2第十六页,共二十七页。Over-complete dictionary atomsHilbert space : Signal: Error: “Sparse: lN , satisfy limited error . sparse approximationSparse decompo

8、sition第十七页,共二十七页。Major algorithms: Basic Pursuit, Matching Pursuits, OMPMatching Pursuits (MP):1st: kth : sparse decompositionSparse approximation 与 正交第十八页,共二十七页。K-SVD: training dictionaryPotential applications for EEG:Coefficients featuresERP detectionAbnormal EEG detectionClassification of differe

9、nt status of EEG sparse decompositionSparse approximation第十九页,共二十七页。4Classification algorithmsCommon methods1第二十页,共二十七页。Nave BayesLDA: Linear Discriminant AnalysisHMM: Hidden Markov ModellingSVM: Support Vector MachineK-meansANNs: Artificial Neural NetworksFuzzy LogicCommon methods第二十一页,共二十七页。5Indep

10、endent Component AnalysisICA approaches1Application 2第二十二页,共二十七页。Independent Component Analysis ica approaches applications第二十三页,共二十七页。 ica approaches applicationsICA approaches:Factorizing the joint PDF into its marginal PDFsDecorrelating signals through timeEliminating temporal cross-correlation function第二十四页,共二十七页。BSS: Blind Source SeparationNormal brain rhythms, event-related sources Artefacts eye movement & blinking, swallow applicationsIca approaches第二十五页,共二十七页。THANKS!第二十六页,共二十七页。内容总结EEG SIGNAL PROCESSING。Optimal KLT

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论