




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、传质分离过程的严格模拟计算1第1页,共58页,2022年,5月20日,21点58分,星期日第五章 传质分离过程的严格模拟计算 5.1 平衡级的理论模型 5.2 三对角矩阵法 5.3 同时校正法 5.4 多组分分离非平衡模型2第2页,共58页,2022年,5月20日,21点58分,星期日多组分精馏过程简捷计算精馏简捷计算FUG法FenskeNmUnderwoodRmGillilandR、N多组分吸收过程简捷计算3第3页,共58页,2022年,5月20日,21点58分,星期日严格计算的必要性简捷算法中引入的假设“恒摩尔流和相对挥发度为常数”,在高压及塔顶、塔釜温差很大的情况下,偏差太大。 简捷计算
2、不能给出各塔板上的浓度、温度等信息,也难以处理具有多股进料,多股侧采及有侧线换热等复杂分离过程。 特殊精馏,多组分吸收,多组分萃取等过程也以采用严格计算为宜。 4第4页,共58页,2022年,5月20日,21点58分,星期日 Except for simple cases, such as binary distillation, graphical, empirical, and approximate group methods are suitable only for preliminary design studies. Final design of multistage equi
3、pment for conducting multicomponent separations requires rigorous determination of temperatures, pressures, stream flow rates, stream compositions, and heat transfer rates at each stage. However, rigorous calculational procedures may not be justified when multicomponent physical properties or stage
4、efficiencies are not reasonably well known.5第5页,共58页,2022年,5月20日,21点58分,星期日严格计算的原则:在给定的条件下,对每块塔板同时进行物料衡算,热量衡算及相平衡和归一化计算。 常用计算软件:Aspen Plus,HYSIM,Process II等。6第6页,共58页,2022年,5月20日,21点58分,星期日5.1 平衡级的理论模型 UjWjFjLjVjLj-1Vj+1Qjzi,j, HF,j, TF,j, pF,jyi,j+1, Hj+1, Tj+1, pj+1xi,j, hj, Tj, pjxi,j-1, hj-1, Tj
5、-1, pj-1yi,j, Hj, Tj, pj第j级平衡级General equilibrium stage7第7页,共58页,2022年,5月20日,21点58分,星期日Assume that:(1) phase equilibrium is achieved at each stage 各级上达到相平衡(2) no chemical reactions occur 无化学反应(3) entrainment of liquid drops in vapor and occlusion of vapor bubbles in liquid are negligible 忽略雾沫夹带假定各级上
6、达到相平衡且无化学反应。 8第8页,共58页,2022年,5月20日,21点58分,星期日建模原则:M Mass balance 物料衡算; MESH方程E Equilibrium relations 相平衡关系;S Summation equations 组分摩尔分率加和式; H Heat (energy, enthalpy) balance热量衡算。UjWjFjLjVjLj-1Vj+1Qjzi,j, HF,j, TF,j, pF,jyi,j+1, Hj+1, Tj+1, pj+1xi,j, hj, Tj, pjxi,j-1, hj-1, Tj-1, pj-1yi,j, Hj, Tj, pj
7、第j级9第9页,共58页,2022年,5月20日,21点58分,星期日对第j级:(1)物料衡算(Meq.): 01111=+-+-+=+-jijjjijjjijjijjijMjiyWVxULzFyVxLG,)()(i=1,2,CC个 (2)相平衡关系式(Eeq.): 0=-=jijijiEjixKyG,i=1,2,CC个 (3)摩尔分率加和式(Seq.): 2个 c001=-= .,1=ijiSYjyGi=1,2,C001=-= .,c1=ijiSXjxGi=1,2,C(4)热量衡算式(Heq.): 01111=-+-+-+=+-jjjjjjjjFjjjjjHjQHWVhULHFHVhLG)(
8、)(,1个 共有(2C3)个方程 10第10页,共58页,2022年,5月20日,21点58分,星期日将上述N个平衡级按逆流方式串联: UjWjFjLjVjLj-1Vj+1QjjF1V1Q11FNLNQNN普通的N级逆流装置 11第11页,共58页,2022年,5月20日,21点58分,星期日UjWjFjLjVjLj-1Vj+1QjjF1V1Q11FNLNQNN设计变量分析: 固定设计变量Nx: 进料变量数: N(C+2)压力等级数: N可调设计变量Na: N(C+3)串级单元数: 侧线采出数: 传热单元数: 分配器数: 12N2N03N-1总设计变量数Ni= Nx+Na = N(C+6)-1
9、 12第12页,共58页,2022年,5月20日,21点58分,星期日设计变量的规定:设计型:关键组分的回收率(或浓度)及相关参数平衡级数,进料位置等操作型:达到的分离程度(回收率或浓度)平衡级数,进料位置及相关参数13第13页,共58页,2022年,5月20日,21点58分,星期日对操作型问题可以指定以下变量: 1、进料信息:Fj、zij、TFj、PFj N(C+2)个 2、各级压力:Pj N个 3、各级侧线采出:Uj、Wj 2(N1)个 4、各级换热:Qj N个 5、级数:N 1个未知量: N(C+6)-1 1、液相组成:xi,j NC个 2、气相组成:yi,j NC个 3、液相流率:Lj
10、 N个 4、气相流率:Vj N个 5、各级温度:Tj N个N(2C+3)个有唯一解 14第14页,共58页,2022年,5月20日,21点58分,星期日 The above relations are nonlinear algebraic equations that interact strongly. Consequently, solution procedures are relatively difficult and tedious. A solution method is required to be programmed for a computer.15第15页,共58页
11、,2022年,5月20日,21点58分,星期日5.2 三对角线矩阵法Tridiagonal Matrix Algorithm Equation-tearing Procedures方程解离法(又称配对收敛法) 按方程类型分组的多级分离过程的计算方法。 适合操作型计算。 5.2.1 方程的解离方法及求解 5.2.2 泡点法(BP法)5.2.3 流率加和法(SR法)16第16页,共58页,2022年,5月20日,21点58分,星期日5.2.1 方程的解离方法及求解Equation-tearing Procedures 一、方程的解离:MESHME:工作方程算组成SH校验方程(校核方程)算温度、流率
12、求解: 液相组成xi,j,汽相组成yi,j,温度Tj,流率Vj或Lj。泡点法(BP):用S检验T,用H检验V。流率加合法(SR):用S检验V,用H检验T。17第17页,共58页,2022年,5月20日,21点58分,星期日01111=+-+-+=+-jijjjijjjijjijjijMjiyWVxULzFyVxLG,)()(i=1,2,CMeq.Eeq.0=-=jijijiEjixKyG,i=1,2,C将相平衡关系(E-eq.)代入物料衡算方程(M-eq.): 011111=+-+-+-jijijjjijjjijjijijjijxKWVxULzFxKVxL,)()(为消去L,从第1级到第j级作
13、总物料衡算: 11VWUFVLjmmmjj-+= 1m=+)(将上式代入修正的M-eq.,整理可得: 18第18页,共58页,2022年,5月20日,21点58分,星期日jjijjijjijDxCxBxA=+-11,19第19页,共58页,2022年,5月20日,21点58分,星期日第1级无液相采出,第N级无汽相采出: (5-8)20第20页,共58页,2022年,5月20日,21点58分,星期日二、三对角线矩阵的托马斯法 追赶法(托马斯法)求解: (1) 先假定Tj和Vj; (2) 计算相平衡常数Ki,j,得到线性化的ME方程; (3) 高斯消去法,将(5-8)转化为二对角矩阵方程; 解出x
14、i,N,xi,N,xi,1。(4) 一般情况下,xi,j不会满足S-eq.和H-eq.,用S-eq.和H-eq.作为收敛的校验方程,算出新的Tj和Vj; (5) 以算出的新的Tj和Vj为迭代值,返回 (1); 21第21页,共58页,2022年,5月20日,21点58分,星期日配对收敛方法的特点: 将两个校验方程(S-eq.和H-eq.)与两个迭代变量分别配对。 根据不同的配对方案形成两种不同的算法:泡点法(BP法)和流率加和法(SR法)。22第22页,共58页,2022年,5月20日,21点58分,星期日 For separators where the feed(s) contains o
15、nly components of similar volatility (narrow-boiling case), a bubble-point (BP) method is recommended. For a feed(s) containing components of widely different volatility (wide-boiling case) or solubility, a sum-rates (SR) method is suggested.23第23页,共58页,2022年,5月20日,21点58分,星期日5.2.2 泡点法(BP法)Bubble-poi
16、nt Method BP法适用于窄沸程混合物的分离计算,如一般的精馏过程。 在此情况下,各平衡级上的传质过程主要依赖于两相流体的部分汽化和部分冷凝,平衡级温度就是泡点温度或露点温度,它们主要取决于两相组成,所以用组分的摩尔分数加和式,即S-方程来检验平衡级温度Tj是否正确。 精馏系统内的热量传递主要由潜热的变化引起,由此也引起两相流率的变化,所以用热量衡算方程,即H-方程来检验流率Vj是否正确。24第24页,共58页,2022年,5月20日,21点58分,星期日规定: 进料:Fj,zi,j,TFj,PFj 压力:pj 侧采:Uj,Wj 热负荷:Qj(除Q1和QN) 级数:N 回流量:L1 气相
17、馏出量:V1开 始设定Tj、Vj初值解三对角线矩阵方程,求xi,j归一化xi,j泡点计算,求新的Tj,Vj计算冷凝器和再沸器的热负荷(Q1和QN)H-eq.计算新的Vj ;计算Lj)调整Tj和Vj结 束yesno规定设计变量是否满足迭代收敛准则BP法计算框图25第25页,共58页,2022年,5月20日,21点58分,星期日StartSpecify conditionsspecify: feed:Fj,zi,j,TFj,PFj pressure:pj side streams:Uj,Wj heat load:Qj No. of stages:N reflux:L1 vapor distilla
18、te:V1Initialize tear variables Tj, VjCompute x by Thomas methodNormalize xi,j for each stageCompute new Tj form BP eq and yCompute Q1 and QNCompute new Vj and LjIs 0.01N?ExityesnoconvergedNot convergedAdjust tear variablesAlgorithm for BP Method26第26页,共58页,2022年,5月20日,21点58分,星期日一、迭代变量Tj、Vj初值的给出 1、Vj
19、: 用指定回流比、馏出量、进料量、侧线采出量,按恒摩尔流假设给出一组Vj的初值。 Establish an initial set of Vj based on the assumption of constant molar interstage flows using the specified reflux, distillate, feed, and side-stream flow rates.27第27页,共58页,2022年,5月20日,21点58分,星期日一、迭代变量Tj、Vj初值的给出 2、Tj: (1)塔顶:气相采出:液相采出:气、液相混合:露点温度泡点温度泡、露点之间的温
20、度(2)塔釜:釜液泡点温度线性内插,得到中间各级温度初值。 28第28页,共58页,2022年,5月20日,21点58分,星期日二、归一化 Normalization 由于求三对角矩阵方程时没有考虑S-eq.的约束,必须对得到的xi,j归一化。 =Cjijixx=i1jix,三、泡点方程的计算 (实际就是S-eq.): 001=-= .,c1=ijiSYjyG29第29页,共58页,2022年,5月20日,21点58分,星期日四、Vj的计算 通过物料衡算和热量衡算得到二对角线矩阵方程: 先求V3,再依次求出V4VN。30第30页,共58页,2022年,5月20日,21点58分,星期日五、迭代收
21、敛的标准 或更简单的: p186【例5-1】泡点法模拟精馏分离轻烃混合物31第31页,共58页,2022年,5月20日,21点58分,星期日5.2.3 流率加和法Sum-Rates Method SR法适用于宽沸程混合物的分离过程, 如吸收、解吸、气提和萃取等过程的计算。 The chemical components present in most absorbers and strippers cover a relatively wide range of volatility (组分的挥发度相差大). Hence, the BP method of solving the MESH e
22、quations will fail because calculation of stage temperature by bubble-point determination is too sensitive to liquid-phase composition (通过泡点计算的级温度对液相组成的变化太敏感)and the stage energy balance is much more sensitive to stage temperatures than to interstage flow rates (热量平衡对级温度比对级间流率敏感的多). 用S-方程计算流率;用H-方程计
23、算级温度。32第32页,共58页,2022年,5月20日,21点58分,星期日规定: 进料:Fj,zi,j,TFj,PFj 压力:pj 侧采:Uj,Wj 热负荷:Qj(除Q1和QN) 级数:N 回流量:L1 气相馏出量:V1开 始设定Tj、Vj初值解三对角线矩阵方程,求xi,j归一化xi,j和yi,j求新的Tj(k+1)= Tj(k)+Tj(k) Tj(k)通过托马斯法求解一偏导数矩阵方程(5-18)S-eq.计算Lj ;物料衡算计算Vj)调整Tj和Vj结 束yesno规定设计变量是否满足迭代收敛准则SR法计算框图33第33页,共58页,2022年,5月20日,21点58分,星期日StartS
24、pecify conditionsspecify: feed:Fj,zi,j,TFj,PFj pressure:pj side streams:Uj,Wj heat load:Qj No. of stages:NInitialize tear variables Tj, VjCompute x by Thomas methodCompute new Lj from sum-rates ralation and new VjNormalize xi,j and calculate corresponding yi,j and normalize yi,jCompute new TjIs 0.01
25、N?ExityesnoconvergedNot convergedAdjust tear variablesAlgorithm for SR Method34第34页,共58页,2022年,5月20日,21点58分,星期日(I) Initialization of Tj and Vj Vj: 根据气相进料和侧采,按恒摩尔流假设给出一组Vj的初值。 Assume a set of Vj values based on the assumption of constant molar interstage flows, working up from the bottom of the absor
26、ber using specified vapor feeds and any vapor side-stream flows.35第35页,共58页,2022年,5月20日,21点58分,星期日一、迭代变量Tj、Vj初值的给出 2、Tj: Generally, an adequate initial set of Tj values can be provided by computing or assuming both the bubble-point temperature of an estimated bottoms product and the dew-point temper
27、ature of an assumed vapor distillate product; or computing or assuming bubble-point temperature if distillage is liquid or a temperature in-between the dew-point and bubble-point temperatures if distillate is mixed, and then determining the other stage temperatures by assuming a linear variation of
28、temperature with stage location.36第36页,共58页,2022年,5月20日,21点58分,星期日(II) Calculate new values of Lj and Vj +=CkjkjLL=i11jix,)()(Lj(k) is calculated from Vj(k) by material balance: Vj(k1) is obtained by total material balance for stage jN : () -+-=N=jmmmmNjjWUFLLV1 Values of xi,j obtained by Thomas alg
29、orithm are not normalized at this step but are utilized directly to produce new values of Lj by applying the sum-rates equation.37第37页,共58页,2022年,5月20日,21点58分,星期日(III) Normalize xi,j and yi,jNormalize xi,j: =Cjijixx=i1jix,Calculate yi,j by E-eq.:0=-=jijijiEjixKyG,Normalize yi,j: =Cjijiyy=i1jiy,38第38
30、页,共58页,2022年,5月20日,21点58分,星期日(IV) Calculate new Tj Since enthalpies are generally nonlinear in temperature, an iterative solution procedure is required, such as the commonly used Newton-Raphson method: This matrix of partial derivatives is called the Jacobian correction matrix which can be solve by
31、employing Thomas algorithm to get the set of corrections Tj(k).jkjjkjjkjjDTCTBTA)(1)()(1=D+D+D+-39第39页,共58页,2022年,5月20日,21点58分,星期日(V) Convergence criterion Or simply:p190【例5-2】流率加和法模拟吸收塔40第40页,共58页,2022年,5月20日,21点58分,星期日Summary1. Rigorous methods are readily available for computer-solution of equili
32、brium-based models for multicomponent, multistage absorption, stripping, distillation, and liquid-liquid extraction.2. The equilibrium-based model for a countercurrent-flow cascade provides for multiple feeds, vapor side streams, liquid side streams, and intermediate heat exchangers. Thus, the model
33、 can handle almost any type of column configuration.41第41页,共58页,2022年,5月20日,21点58分,星期日Summary3. The model equations include component material balances, total material balances, phase equilibria relations, and energy balances.4. Some or all of the model equations can usually be grouped so as to obta
34、in tridiagonal matrix equations, for which an efficient solution algorithm is available.42第42页,共58页,2022年,5月20日,21点58分,星期日Summary5. Widely used methods for iteratively solving all of the model equations are the bubble-point (BP) method, the sum-rates (SR) method, the simultaneous correction (SC) met
35、hod, and the inside-out method.6. The BP method is generally restricted to distillation problems involving narrow-boiling feed mixtures.7. The SR method is generally restricted to absorption and stripping problems involving wide-boiling feed mixtures or in the Isothermal Sum-Rates (ISR) form to extr
36、action problems.43第43页,共58页,2022年,5月20日,21点58分,星期日1893: Supplements- Development of Equilibrium-based Models The fundamental equations for the equilibrium-based models were first published by Sorel. The equations consisted of material balances around top and bottom sections of equilibrium stages, in
37、cluding a total condenser and a reboiler, and corresponding energy balances that included provision for heat losses. Graphs of phase-equilibrium data were used instead of equations. Sorels model was not widely applied because of its complexity.44第44页,共58页,2022年,5月20日,21点58分,星期日1921: Supplements- Dev
38、elopment of Equilibrium-based Models Sorels model was adapted to graphical solution techniques for binary systems by Ponchon and Savarit who used an enthalpy-concentration diagram. 45第45页,共58页,2022年,5月20日,21点58分,星期日1925: Supplements- Development of Equilibrium-based Models A much simpler, but less r
39、igorous, graphical technique was developed by McCabe and Thiele, who eliminated the energy balances by assuming a constant-molar-overflow. McCabe-Thiele graphical method is applied even today for binary distillation because the method gives valuable insight into changes in phase compositions from st
40、age to stage. 46第46页,共58页,2022年,5月20日,21点58分,星期日1938: Supplements- Development of Equilibrium-based Models A notable achievement was made by Smoker for the distillation of a binary mixture by assuming not only constant molar overflow, but also constant relative volatility between the two components.
41、 47第47页,共58页,2022年,5月20日,21点58分,星期日1930s1950s: Supplements- Development of Equilibrium-based Models Two iterative, numerical methods were developed for obtaining a general solution to Sorels model for the distillation of multicomponent mixtures. The Thiele-Geddes method requires specification of NT,
42、 the feed stage, R, and the distillate flow rate, with the resulting distribution of the components. The Lewis-Matheson method computes the NT and the location of the feed stage for a specified R and split between two key components. These two methods were widely used for the simulation and design o
43、f single-feed multicomponent distillation columns prior to the 1960s. 48第48页,共58页,2022年,5月20日,21点58分,星期日1958: Supplements- Development of Equilibrium-based Models Techniques of matrix algebra were applied by Amundson, leading to a number of successful computer-aided design and simulation programs ab
44、ound for the rigorous, iterative numerical solution of Sorels equilibrium-based model for a wide variety of column configurations and specifications. Although the iterative computations sometimes fail to converge, the methods are widely applied and have become more flexible and robust with each pass
45、ing year. 49第49页,共58页,2022年,5月20日,21点58分,星期日Limitation of Equilibrium-based Models The equilibrium-based methods assume that equilibrium is achieved, at each stage, with respect to both heat and component mass transfer. Except when temperature changes significantly from stage to stage, the assumptio
46、n of temperature equality for vapor and liquid phases leaving a stage is usually acceptable. However, in most industrial applications, the assumption of equilibrium with respect to exiting phase compositions is not reasonable. In general, exiting vapor-phase mole fractions are not related to exiting
47、 liquid-phase mole fractions by thermodynamic K-values. 50第50页,共58页,2022年,5月20日,21点58分,星期日Procedures for accounting for nonequilibrium:Overall stage efficiency: Proposed by Lewis in 1922, For converting theoretical stages to actual stages. Experimental data show that this efficiency varies over a range of 5% to 120% depending on the application.51第51页,共58页,2022年,5月20日,21点58分,星期日Procedur
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 坚守教育初心 担当育人使命-新时代教师队伍建设实践路径
- 护理健康宣教排痰方案
- 幼儿园燃气安全教育课件
- 降低护理文书书写缺陷的品管圈应用
- 2025年新版本三方购销合同
- 2025签订租赁合同范文
- 2025出版合同协议范本
- 2025届山东省潍坊市高考二模历史试题(含答案)
- 2025出租仓库合同
- 2025年合同终止后的法律效果有哪些
- 应急总医院合同制康复医学科工作人员招考聘用高频重点提升(共500题)附带答案详解
- 《消防器材使用教程》课件
- 《小儿静脉穿刺》课件
- DB11-T 212-2024 园林绿化工程施工及验收规范
- 托盘贸易合作合同范例
- 劳动节安全教育家长会
- 品类运营管理
- 用工单位与劳务派遣公司合同
- 我的家乡浙江衢州
- 国家开放大学国开电大《儿童心理学》形考任务+大作业答案
- 股骨下端骨折的临床特征
评论
0/150
提交评论