钠离子电池锂资源紧缺下的新解法_第1页
钠离子电池锂资源紧缺下的新解法_第2页
钠离子电池锂资源紧缺下的新解法_第3页
钠离子电池锂资源紧缺下的新解法_第4页
钠离子电池锂资源紧缺下的新解法_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、战略意义驱动钠离子电池重拾热度钠离子电池基本原理:用钠再现锂电结构框架钠离子电池(SIB)是一种使用钠离子(Na+)作为电荷载体的可充电电池,和锂离子电池同为二次电池,都是由载荷金属离子在电极之间发生可逆的嵌入和脱出,进行化学能和电能之间的转换。具体来说,放电时,负极材料失去电子,其中的钠离子嵌脱进入到电解液,正极材料中的可变价过渡金属得到电子发生还原反应,使得电解液中的钠离子向正极运动并且嵌入到正极晶格中,化学能转化为电能,驱动外电路运行;充电时外加电压使“摇椅反应”逆向进行,正极失去电子发生氧化反应,钠离子从正极晶格中脱嵌进入电解液,负极得到电子发生还原反应,使得电解液中钠离子向负极移动并

2、插入负极材料中,将电能转化为化学能储存起来。理论上这种充电放电反应能反复进行,一轮为一个充电周期,或称循环周期。图表1: 钠离子电池工作原理,正负极氧化还原反应驱动钠离子在电解液内的移动CNKII钠离子电池电极材料研究进展张宁,2015 年 9 月、中科海钠公司官网、钠资源可以缓解锂资源的稀缺和垄断问题。锂在地壳中的丰度仅百万分之十七,美国地质调查局公布 2019 年全球探明锂资源储量约 6200 万吨。另外锂资源目前 70%储量分布在南美洲,其中智利锂矿储量排名世界第一,占全球储量的 50%以上,资源呈现明显的寡头垄断格局,地缘政治、全球性事件较易对产业链供应带来冲击。钠是地壳中第六丰富的元

3、素和第四丰富的金属元素,丰度是锂的 1300 倍以上。并且钠资源分布广泛,目前海水制氯化钠技术也十分方便高效。上述因素使得 2022 年 8 月单吨碳酸钠价格(2000 元一吨)仅为碳酸锂(48 万元/吨)的 0.4%,且价格相对稳定。 图表2: 钠离子电池规避了锂矿的丰度相对较低、国内分布较少的问题资料来源:中科海钠、图表3: 碳酸钠价格显著低于碳酸锂价格,并且波动幅度相对较小100,00090,00080,00070,00060,00050,00040,00030,00020,00010,00002019/1/312020/1/312021/1/312,500 工业级碳酸锂价格(元/吨)

4、工业级碳酸钠价格(轻灰,元/吨)2,0001,5001,00050002019/1/312020/1/312021/1/31资料来源:中国金属网、中国石油和化学工业联合会、钠和锂的化学性质相近,能复用部分锂离子电池生产技术和体系。钠元素和锂元素处于元素周期表碱金属族相邻位置,原子最外层都仅有单个电子,化学性质十分接近。以它们的离子作为载流子的电池也具有类似的原理和结构。钠离子电池正极也常用高温固相、共沉淀、球磨法等方法制备。锂离子电池的生产体系大部分可以在钠离子电池上复用、生产能力可以部分兼容。重拾热度:锂电上游供给紧张下的破局之道基础研究始于 20 世纪 70 年代,中间被搁置,而后重拾热度

5、。钠离子电池的研究可以追溯到 20 世纪 70 年代,几乎和锂离子电池是同时开始,而随着 20 世纪 90 年代锂离子电池的商业化,钠离子电池的研究被搁置,主要是因为钠的质量和体积较大,锂离子电池的能量密度更优,且钠的原子量大、工作电压偏低。近年来在全球新能源产业的加速布局下,市场的逐渐成熟和政策补贴的退坡催生行业进一步拓展产品类型匹配应用场景、分化路线降本的需求。并且由于锂离子电池上游原材料的垄断性、产能扩张缓慢,产业链价值量有向上游倾斜的趋势,给下游电池厂带来了向上掌控原材料供应链和向下传导成本的双重压力,下游电池厂因此开始积极找替代方案以提升对供应链的掌控能力。图表4: 钠离子电池发展历

6、程资料来源:CNKI钠离子电池关键电极材料研究进展,各公司官网,英国 Faradion 公司于 2011 年成立,是全球首家从事钠离子电池工程化研究的公司,目前 Faradion 公司的产品正极材料为镍、锰、钛层状氧化物,负极材料采用硬碳,且公司已研制出 10Ah 软包电池样品,能量密度达到 140Wh/kg,电池平均工作电压为 3.2V,在 80%放电深度下的循环寿命预测可以超过 1000 次;此外,美国 Natron Energy 采用普鲁士蓝材料开发了高倍率水系钠离子电池,2C 倍率下的循环寿命达到 10000 次;日本丰田公司电池研究部也在 2015 年宣布开发出了新的钠离子电池正极材

7、料体系。图表5: 海外主要钠电池制造企业的开发状态国家公司/机构钠电池产品美国Natron Energy 公司对称水系电池,高倍率普鲁士蓝正极英国Faradion 公司软包钠电池; Ni 基层状氧化物正极;硬碳负极法国NAIADES 计划团体元组钠电池;氟磷钒酸钠正极;硬碳负极瑞典ALTRIS 公司普鲁士白正极日本丰田正极材料岸田化学过渡金属氧化物正极;电解质澳大利亚卧龙岗大学普鲁士蓝正极;硬碳负极资料来源:CNKI储能用钠离子电池的发展,国内首家钠离子电池公司中科海钠于 2017 年成立,依托中科院物理研究所技术的中科海钠公司已经研制出能量密度高于 135Wh/kg 的钠离子电池,平均工作电

8、压为 3.2V,在 100%深度放电,循环 1000 次后容量保持率为 91%,现已实现正、负极材料百吨级制备及小批量供货,钠离子电芯也具备了 MWh 级的制造能力,并率先完成了在低速电动车和 30kW、 100kWh 储能电站的示范作用。2021 年,宁德时代发布钠离子电池,并宣告 23 年实现量产。2022 年,传艺科技、维科技术等新进入者也纷纷宣告布局钠离子电池。图表6: 国内钠电领域企业布局情况公司/机构宁德时代国家中国能量密度160Wh/kg循环寿命电池体系普鲁士蓝和(或)层状金属氧化物/硬碳体最新进展2021 年 7 月 29 日发布钠离子电池,各性能指标接近磷酸铁锂,定位与锂电池

9、互系补,与磷酸铁锂一同整合进动力电池系中科海钠中国150Wh/kg2C 倍率下 4500 循Cu 层状氧化物/软碳,统。将于 2023 年基本建成产业链推出首量钠离子电池(72V 80Ah)驱动的环,容量保持率 83%有机电解液低速电动车;2019 年建立了首座30kW/100kWh 钠离子电池储能站;2021年 6 月 28 日,全球首套 1MWh 钠离子电池光储充智能微网系统投入运行辽宁星空钠电钠创新能源中国中国120Wh/kg循环 1000 次后,容量保持率 94.6%Ni 层状氧化物/硬碳软建成首个钠离子电池生产线,已经量产与现有锂离子电池生产工艺兼容;成本优包电池势不明显,有机体系存

10、在安全隐患。鹏辉能源中国磷酸钒钠/硬碳体系已有钠电池样品,6 月份进行中试,预计年底前批量生产传艺科技维科技术中国中国140Wh/kg层状氧化物/硬碳层状氧化物/硬碳软包预计年底中试线投产,明年 4 月一期2GWh 投产,后续二期规划 8GWh与钠创合作,明年投产 1GW,远期规划电池10GW欣旺达中国公司提出拥有储备钠离子电池补钠的方法及钠离子电池发明专利技术。宁德时代发布会(2021 年 9 月 23 日),中科海钠官网,公司公告,宁德时代:战略性布局,融入锂离子体系,产品应用布局超预期确定钠电定位,吹响钠电产业化号角。宁德时代 2021 年 7 月 29 日发布其第一代钠离子电池,宣布采

11、用普鲁士蓝和(或)层状金属氧化物/硬碳体系,定位为与锂离子电池相互补充。发布会意义在于证明钠离子电池的性能可用性和具体场景的落地,利用宁德时代强大的供应链影响力吹响了钠离子电池正式产业化的号角。但是发布会未直接提及的成本和循环性能有待长期考量。其制造体系主要是材料改变,制造设备可以与现有锂电产线兼容:正极材料:普鲁士白、层状氧化物,体相结构进行电荷重排,还有一些表面改性,解决了循环过程中的能量快速衰减问题,160mAh/g,与锂离子正极相当;负极材料:改性后的硬碳,比容量 350mAh/g,与目前石墨相当;电解液:新型电解液。电芯性能相较于现有钠离子电池产品有了很大提高,位于世界顶尖水平,在多

12、方面接近甚至超越磷酸铁锂电池:单体能量密度:160Wh/kg,全球最高,略低于目前磷酸铁锂;快充性能:15min 充入 80%;低温性能:-20下容量保持率90%;热稳定性超过国家安全要求;系统集成率(成组效率):80%。图表7: 宁德时代第一代钠离子电池与磷酸铁锂电池性能对比资料来源:宁德时代发布会(2021 年 9 月 23 日)、应用布局超预期,拓宽钠离子动力电池应用场景。之前市场认为宁德时代布局钠离子电池主要出于增强供应链把控能力的战略考量。本次发布会宁德时代将钠离子电池第一阶段的应用定位为提升动力电池的低温工作性能,将钠离子电池和磷酸铁锂电池整合进同一电池系统,通过 BMS 统一调控

13、,以此获得能量密度和低温性能的平衡。清晰的需求定位或使得产业化加速进行。图表8: 宁德时代钠离子电池与磷酸铁锂电池的整合方案资料来源:宁德时代发布会、宁德时代在钠离子电池方面专利涉及金属氧化物、钠离子超导材料、普鲁士蓝等正极材料,已经有良好的性能表现,与现有生产工艺兼容性好,并且未来尚有改性空间。其中普鲁士蓝材料分子式为 Na1.989MnFe(CN)60.9972.185H2O,首次充电容量达到 169.5mAh/g,循环 50 次容量保持率 95%,1C 容量 89.2%,其制作工艺主要是共沉淀和干燥。O3 相层状四元金属氧化物材料 Na0.85Cu0.05Ni0.175Fe0.2Mn0.

14、525O2 参杂 CuO 在 2.0-4.5V 下首次放电容量达到 164.7mAh/g,1C 循环 100 次容量 82.2%,Na0.85Li0.1Ni0.175Fe0.2Mn0.525O2 参杂 Li2CO3在 2.0-4.5V 下首次放电容量达到 159.6 mAh/g,1C 循环 100 次容量 83.2%,其制作工艺主要是共沉淀和 900烧结。中科海钠:钠电国家队,技术全面、产品领先背靠中科院,具备全材料自研、生产能力,产品性能优秀。中科海钠立足于中科院物理所清洁能源实验室,已经建成了钠离子电池正负极材料百吨级中试线及兆瓦时级电芯线,全面布局电池系统、金属氧化物正极、硬碳负极、隔膜

15、、电解液添加剂、电池回收等领域,同时具备材料上的 know-what 和改性、产业化的 know-how。2020 年 9 月其已经量产的钠离子电池能量密度超过 145Wh/kg,5C 容量超过 1C 容量的 90%,2C 下循环 4500 周期容量保持率大于 83%,且可在-4080的广泛温度下工作,整体性能达到业界领先水平,已经突破了储能和动力电池的应用门槛。2021 年 6 月 28 日,中科海钠与中科院物理所在山西太原综改区联合推出了全球首套 1MWh 钠离子电池光储充智能微网系统,并成功投入运行。与三峡能源合作阜阳海钠项目,2022 年 7 月 28 日,正式落成全球首条 GWh 钠

16、离子电池生产线,总投资 5.88 亿,后期规划 5/25GWh。量产多采用常规工艺,与现有产线兼容度较高。专利数据显示,中科海钠在正极方面,技术积累主要在利用钠离子超导材料、普鲁士蓝类材料对镍、铁、铜、锰等氧化物进行参杂、包覆,从而得到高性能正极,主要加工工艺为单次烧结、球磨包覆。得到的 Na3O2V2(PO4)2F包覆的 NaNi0.23Cu0.11Fe0.33Mn0.33O2 循环 200 次容量保持率在 94.2%。负极主要是以煤粉、沥青等原料高温碳化制作,得到的软碳材料可逆比容量达到 245.4mAh/g,循环 200 次容量保持 96%。钠电池性价比介于锂电池和铅酸电池钠电池 vs

17、锂电池:钠电池电化学性能更稳定,成本更低钠离子与锂离子物理性能存在差异。钠是元素周期表中紧跟锂排列的碱金属元素,钠和锂在物化性质上存在一定差异,由此带来电化学性能上的差异。钠离子质量和半径较大,使其在储钠材料中的迁移速度过慢而严重限制了钠离子电池倍率性能的提升和储钠容量的表达,也导致了钠离子的质量和体积能量密度不及锂离子。因此,钠电池需要通过不同与锂电池的材料体系来发挥钠离子自身的优势。图表9: 钠与锂物理化学性质差异项目钠锂原子序数113原子质量(g/mol)22.996.94原子半径(A)1.861.52离子半径(A)1.020.76标准电极电位(V)-2.71-3.04比容量(mAh/g

18、)11653829地壳储量(%)2.640.002资料来源:CNKI储能用钠离子电池的发展,钠离子电池能量密度、循环寿命有劣势,但是具备更好的热稳定性。钠离子电池能量密度70-200Wh/kg,现阶段钠电池能量密度主要集中在 130-160Wh/kg 区间,与磷酸铁锂的140-190Wh/kg 的能量密度有部分重叠,可以替代部分铁锂的市场,而三元锂电池能量密度较高,达到 240-350Wh/kg,钠电池与三元电池存在一定互补关系。钠电池的理论循环可以达到 10000 次,目前主流产品循环在 3000-4000 次,与磷酸铁锂电池还有一定差距。钠离子电池热失控过程中容易钝化失活,安全实验表现较锂

19、离子电池更好,目前钠离子电池已通过中汽中心的检测,针刺时不冒烟、不起火、不爆炸,经受短路、过充、过放、挤压等实验也不起火燃烧。对比锂离子电池起始自加热温度达到 165,钠离子电池则达到 260;且在 ARC 测试中钠离子电池最大自加热速度显著低于锂离子电池,这些均表明钠离子电池具有更好的热稳定性。图表10: 钠离子电池与铅酸、锂离子电池性能比较铅酸电池钠离子电池(铜基氧化物/煤基碳体系)锂离子电池(磷酸铁锂/石墨体系)能量密度(Wh/kg)30-50100-150120-180循环寿命(次)300-5002000 次以上3000 次以上工作电压(V)23.23.2-20容量保持率小于 60%8

20、8%以上小于 70%耐过放电差可放电至 0V差安全性优有潜力达到最优优环保性差最优优自放电率(每月)5%5%30%资料来源:中科海钠官网,中商产业研究,钠离子电池相比锂离子电池理论材料成本下降 30-40%。材料的主要降本方式是通过替换正极和电解液中的锂元素,通过使用原材料无烟煤降低负极成本,同时负极集流体用铝箔替换掉负极的铜箔。根据中科海钠数据,理论上钠离子电池相较锂离子电池材料成本能下降 30%-40%。图表11: 钠电池与锂电池成本对比资料来源:中科海钠官网,钠电降本关键在正负极,远期理论成本可降低至 0.3-0.4 元/Wh。目前钠离子电池价格高昂主要是正负极材料及配套的电解液未大规模

21、量产,正极材料中,层状氧化物价格在 15-20万元/吨(CuFeMn 基价格稍低),普鲁士白类在 20 万元/吨,未来远期普鲁士白类理论价格可以做到 3 万元/吨。负极材料目前主要是国外可乐丽在硬碳技术上领先,单吨售价超 20万元,国产硬碳价格在 15 万元/吨左右,远期可以做到 3-5 万元/吨。无烟煤路线价格较低,在 1 万元/吨左右。现阶段供应链不完整,生产工艺待提升,目前钠离子电池未量产前的成品成本在 1.07 元/Wh,未来随着技术近一步成熟,产量增长后的规模效应显现,我们根据专家调研的单耗及材料价格预测后续大规模量产后钠电池材料成本能降低至 0.3-0.4 元/Wh。图表12: 钠

22、离子电池材料成本拆解材料单位单耗(Wh)单价-当下(元)单价-远期(元)成本-当下(元/Wh)成本-远期(元/Wh)名称正极材料Kg2.7200400.540.11负极材料Kg1.5150250.230.04电解液Kg1.872250.130.05隔膜m2301.461.460.040.04集流体(铝箔)Kg0.740400.030.03其他材料0.10.08资料来源:数说新能源、预测钠电池相较铅酸电池、全钒液流电池性价比更高从能量密度看,钠离子电池能量密度 70-200Wh/kg,远高于铅酸和全钒液流电池。全钒液流电池的优点在于其功率和容积可以独立设计构思。温度性能上,钠离子电池拥有较好的低

23、温保持率,-20容量保持率88%,全钒液流电池对工作环境要求高(5-40),铅酸电池低温性能较差,-20放电保持率60%,目前来看钠离子电池有望在极寒地区储能得到率先应用。产业化进度上,铅酸电池产业化最成熟,但是面临环保问题,目前已形成了铅回收全产业链布局。钠离子电池相关资源丰富,目前主要问题是配套的正负极材料及电解液产业链不成熟,导致成本难以下降。全钒液流电池则在生产技术还没稳定,渗漏液技术并没有攻克,还存在电解液、离子交换膜等至关重要材料的牵制。同时由于行业仍处在示范到商业化的前期,供应链不成熟,市场仍处在开发阶段。从投资单位的造价来说,以集装箱方舱交付的形态,钒电池价格在 3 元/Wh

24、左右,价格较为高昂。图表13: 钠离子电池与铅酸、全钒液流电池优缺点比较钠离子电池全钒液流电池铅酸蓄电池工作原理利用钠离子在正负极之间嵌脱过程实现充放电的摇椅式二次电池优点1.能量密度70-200Wh/kg;高低温性能好,-20容量保持率88%;钠离子电池相关金属资源丰富缺点1. 循环次数目前相对较低,远期可能高;2. 目前产业链还不够完整,成本较高资料来源:ICC,有色金属信息网,以钒为活性物质呈循环流动液态的氧化还原电池设计灵活,功率和容积可以独立设计构思;充、放电性能好,可深度放电而不损坏电池,循环寿命长, 适用于长时储能;安全性高,活性物质存在于电解液中,无爆炸、短路风险1.能量密度低

25、,仅为锂电的 1/10,占地面积大;2.成本高仍处在示范到商业化前期,集装箱方舱形态钒电池价格在 3 元/Wh 左右; 3.能量损耗较高,能量损失在 25%-30%左右;4.电池系统复杂,有管道、泵、阀、换热器等辅助部件,核心零部件隔膜和泵有待突破;5.要求温和的温度环境,工作温度 5-40利用阳极(PbO2),阴极(Pb)在电解液 (稀硫酸)中的电势差实现充放电的二次电池成本低,价格低廉;电压稳定,储存性能好;安全性高;铅回收的产业链完善1.能量密度低,只有 30-50Wh/kg;2.使用寿命短 300-500 次;低温性能差-20 放电保持率60%;环保差,对环境腐蚀性强应用场景:百亿广阔

26、市场,等待经济性、循环能力得到验证钠离子电池当前产品的突出优势在于其低温表现和安全性,但是也受制于其在能量密度和循环能力上的劣势。未来随着产业链逐步建成形成规模效应后成本的降低,以及功率、能量密度的优化创新,其有望完全取代锰酸锂需求、部分替代磷酸铁锂需求,在低能量密度电动乘用车、电动两轮车、储能、电动工具等领域得到广泛应用。我们预计 2027 年钠离子电池对应市场规模将达到 582.7 亿元。图表14: 钠离子电池与现有电池体系特性对比能量密度4.94.33.832.922.86.0价格5.06.0功率33.983.00.4111.01.13.511.2.01.02.01.92.81.022.

27、4.7环性能安全性44.324.8钴酸锂锰酸锂 NCM磷酸铁锂钠电池(普鲁士蓝,预期)循钠电池(中科海钠,现有)低温性能6.0来源:中科海钠公司官网、AAB、宁德时代发布会(2021 年 9 月 23 日)、2027 年低能量密度电动乘用车潜在市场空间 51.8 亿元。电动乘用车对电池的底线要求是安全性和功率,主要评价指标是单位容量价格,兼顾电池能量密度。目前低能量密度电动乘用车主要采用磷酸铁锂电池。钠离子电池安全性优于三元电池,和磷酸铁锂接近,充放功率上限高,有望提升汽车加速和快充性能,同时单位容量价格有较大的降低空间,且价格波动较小,具备在电动乘用车上应用的基本条件。虽然其由于能量密度上限

28、较低,难以适应未来高端车的长续航、功能化需求,但是由于其低温性能远好于磷酸铁锂,因此更能满足用户在冬季、高纬度地区的使用需求。此外宁德将在体积重量允许下优先推麒麟电池结合钠电方案,将钠电池和锂电池混合使用加速了钠电池上车。目前在磷酸铁锂能量密度迭代较成熟、天花板显现的情况下,我们看好钠离子电池对磷酸铁锂电池的逐步替换,预计随着宁德时代麒麟电池结合钠电池的方案的使用有望替代部分磷酸铁锂在乘用车的市场,按照钠离子电池 5%的渗透率,我们认为预计中国 2027 年将有186 GWh 的潜在替代空间,以 0.5 元/Wh 价格计算,对应钠离子电池 2027 年潜在市场空间为 51.8 亿元。图表15:

29、 中国低能量密度乘用车潜在替代空间测算,2027 年 51.8 亿元20212022E2023E2024E2025E2026E2027E中国乘用车销量(万辆)2627.52837.72985.03075.03136.03198.73262.7新能源车渗透率14.8%22.0%23.0%24.0%25.0%26.0%27.0%磷酸铁锂占比60%57%54%51%50%50%50%平均单车带电(KWh)39414344454647总带电量(GWh)91.0145.9159.4165.6176.4191.3207.0单价(元/Wh)0.70.60.50.50.5钠电池渗透率1%3%5%钠电池对应市场

30、空间(亿元)8.828.751.8资料来源:鑫椤锂电、中国汽车动力电池产业创新联盟、真锂研究、预测2027 年电动两轮车潜在替代空间 130.7 亿元。电动两轮车电池成本占总成本绝大部分,性价比极其重要,另外由于两轮车电池外露,难有预热、冷却系统,同时容量较小、充电较频繁,因此对电池的工作温度范围、安全性、循环性能也有较高要求。目前电动两轮车常用铅酸或磷酸铁锂电池,但是两者的低温表现都不好。钠离子电池在满足低温表现上有绝对优势,同时也能满足安全性、循环性要求、具有轻量化优势,并且其制造成本有望低于铅酸电池制造成本和锂离子电池,当其回收系统建立完善后,将在电动两轮车领域占据绝对优势。目前铅酸电池

31、售价在 0.47-0.66 元/Wh,两轮车成本敏感,由于钠电池循环寿命是铅酸电池的 3 倍以上,理论上钠电池价格只需低于铅酸电池的 2 倍,约 0.9 元/wh,两轮车企业有明确的替代意愿,我们预计到 2022 年底钠电池拥有 GWh 以上生产能力时,钠电池价格有望降至 0.8 元/Wh,首先在两轮车领域对铅酸电池形成替代,并且渗透率逐步增加,2027 年钠离子电池渗透率有望到 50%,预计中国 2027 年有 52 GWh 潜在替代空间,以 0.5 元/Wh价格计算,2027 年潜在市场空间为 130.7 亿元。图表16: 中国电动两轮车潜在替代空间测算,2027 年 130.7 亿元20

32、19202020212022E2023E2024E2025E2026E2027E国内电动两轮车销量(万辆)3680.04760.04100.04510.04961.05457.16002.86603.17263.4平均单车带电(KWh)0.720.720.720.720.720.720.720.720.72总带电量(GWh)26.534.329.532.535.739.343.247.552.3单价(元/Wh)0.80.70.60.50.50.5钠电池渗透率1%3%5%15%30%50%钠电池对应市场空间(亿元)2.67.511.832.471.3130.7资料来源:中国自行车协会、预测202

33、7 年储能电池潜在市场空间 341.7 亿元。储能建设成本、电价、电池循环寿命、充放电深度是影响储能收益的关键因素。目前国内常用磷酸铁锂电池,国外以三元锂电池为主,但由建设成本、循环寿命驱动逐渐转向磷酸铁锂。目前钠离子电池已经在充放电深度上相较于磷酸铁锂有优势,另外我国重要的风力资源区大量位于寒冷地带或气候温差较大,如内蒙古、甘肃北部、黑龙江、青藏高原,钠离子电池的耐低温特性能发挥很大作用。随着改性带来的循环性能提高(中科海钠钠离子电芯 4500 周期容量保持率83%,接近磷酸铁锂电芯)和规模化量产持续降本,钠离子电池有望在建设成本、电池循环寿命两方面达到储能应用标准。在我们 2021 年 5

34、 月 27 日发布的碳中和至,储能风起报告中,我们测算中国 2027 年储能市场将达到 152 GWh。我们预计钠电池首先在储能上因为低成本优势得到渗透,2022年小批量出货渗透率以示范性项目为主,2023-2027 年随着钠电池大规模量产后价格快速下降渗透逐步提升,根据我们测算钠电池大规模量产成本有望降至 0.4 元/Wh,以 0.5 元/Wh价格和钠离子电池 45%的渗透率计算,2027 年潜在市场空间为 341.7 亿元。图表17: 中国储能潜在替代空间测算,2027 年 341.7 亿元20212022E2023E2024E2025E2026E2027E风光配储电池需求(GWh)22.

35、821.826.735.9952.1175.56109.56电网侧和用户侧储能电池需求(GWh)1.231.822.613.845.748.6112.9155G 基站储能需求(GWh)76811152129.4储能总需求量(GWh)31.029.637.350.872.9105.2151.9单价(元/Wh)0.80.70.60.50.50.5钠电池渗透率1%3%5%15%30%45%钠电池对应市场空间(亿元)2.47.815.254.6157.8341.7资料来源:太阳能发电网、中国建材信息总网、北极星风力发电网、预测2027 年电动工具潜在市场空间 58.5 亿元。电动工具主要包括钻孔机、冲

36、击扳手类、角磨机、锯类、砂光机等,工业、专业级产品注重高功率、稳定耐用,消费级产品注重性价比。钠离子电池有稳定的高功率输出能力、良好的循环特性、性价比潜力,并且工作范围较广,能适应冷天、长时间作业,在该领域有良好的渗透潜力。我们认为电动工具有着需求持续提升、无绳化率提升、容量提升、国产电芯价格提升向国际产品价格看齐等多重趋势,我们给予电动工具市场未来 10%的平均增速假设,钠电池有望在 2023 年大规模量产后逐步渗透,按照钠离子电池 2027 年 30%的渗透率,对应 2027 年潜在市场空间为 58.5 亿元。图表18: 全球电动工具替代空间测算,2027 年 58.46 亿元2019A2

37、020A2021A2022E2023E2024E2025E2026E2027E电动工具8.208.9322.0024.2026.6229.2832.2135.4338.97YoY13%9%146%10%10%10%10%10%10%钠电池渗透率1%3%5%15%30%钠电池装机量0.270.881.615.3111.69(GWh)单价(元/Wh)0.70.60.50.50.5钠电池对应市场空1.865.278.0526.5758.46间(亿元)EVTank、预测钠电池产业链:跟锂电比材料除隔膜外其他有变化,设备通用钠离子电池体系与锂离子电池一致,由正极材料、负极材料、隔膜、电解液、集流体、结构

38、件等组成,但材料除隔膜外均需要调整,设备与锂电设备通用。正极材料主要有过渡金属氧化物、聚阴离子型化合物、普鲁士化合物和非晶态材料四种路线,其中进展较快的是过渡金属氧化物和普鲁士化合物;负极材料主要有金属化合物、碳基材料、合金材料、非金属单质四类路线,其中进展较快的是碳基材料;电解液主盐由六氟磷酸锂变为六氟磷酸钠;负极集流体可以从铜箔变为铝箔;隔离膜保持原先产品;钠离子电池产线与锂离子电池保持一致,无需额外建设产线。图表19: 钠电池与锂电池材料对比钠离子电池磷酸铁锂电池三元电池正极材料普鲁士白和层状氧化物磷酸铁锂电池NCM 和 NCA负极材料硬碳、炭黑、碳纤维、石墨烯等材石墨料电解液钠盐电解液

39、六氟磷酸锂为主盐产业布局研发阶段,有示范项目成熟制作工艺设备兼容设备兼容资料来源:高工锂电,正极:重点关注过渡金属氧化物和普鲁士化合物路线正极材料的选取有五大原则:1)具有较高的比容量;2)具有较高的氧化还原电位,以保证电池具有较高的输出电压;3)良好的结构稳定性和电化学稳定性;4)嵌入化合物需要具有良好的电子电导率和离子电导率;5)资源丰富易得,成本低,制备工艺简单。金属氧化物和普鲁士化合物是主流技术路线。钠离子电池的正极主要有过渡金属氧化物、聚阴离子型化合物、普鲁士化合物和非晶态材料四种路线:1)过渡金属氧化物是目前最受欢迎的正极材料,例如磷酸铁钠、锰酸铁钠、钛锰酸钠等,中科海钠、钠创新能

40、源和 Faradion主要采用该技术路线;2)普鲁士类材料具有较好的电化学性能,具备成本低、稳定性好等优点,但在制备过程中存在配位水含量难以控制等问题,宁德时代、星空钠电和 Natron Energy 是主要公司;3)聚阴离子型材料稳定性和循环寿命好,化合物族类具有多样性,但是较低的本征电子电导率,限制了这类材料的实际应用。图表20: 钠离子电池正极材料主要路线材料说明优势劣势代表企业过渡金属氧化物可分为层状和隧道状过渡金属氧化物,通常用 NaxMO2(M=Co、Fe、Mn 和 Ni 等)表示,层状金属氧化物是当前能量密度高循环性能差宁德时代、中科海钠、钠创主流的正极材料新能源、传艺科技普鲁士

41、蓝类普鲁士蓝类化合物 NaxMAMB(CN)6zH2O(MA 和 MB 为过较好的电化学生产对水敏感宁德时代、钠似物渡金属离子),晶体结构为面心立方,过渡金属离子与氰化性能,成本低,创新能源根形成六配位,碱金属离子处于三位通道结构和配位孔隙中稳定性好聚阴离子类聚阴离子类化合物 NaxMy(XOm)n-z(M 为具有可变价态的热稳定性好,能量密度低,鹏辉能源、众化合物金属离子;X 为 P、S 和 V 等元素)主要分为橄榄石结构磷酸盐、NASCICON(钠离子快离子导体)化合物和磷酸盐循环寿命好导电性差钠能源化合物非晶态材料也叫无定形或玻璃态材料,是固体中的原子不按照一定的空循环性能好,电导率低,

42、稳间顺序排列的固体,原子排不上表现为长程无序,短程有序能量密度好定性和耐酸碱性差资料来源:CNKI钠离子电池关键电极材料研究进展,多家三元正极及前驱体企业布局两类主流正极。目前主流三元正极及前驱体企业对于两类主流钠离子电池正极均有布局。容百科技三条路线均有布局,规划 2023 年层状氧化物正极材料年产能 3.6 万吨,其中普鲁士白材料供货宁德。振华新材合作宁德时代,主要布局层状金属氧化物体系,生产线与现有三元产线兼容,正处于吨级送样阶段。格林美拥有钠离子电池补钠的方法、钠离子电池及其制备方法等多项专利;在普鲁士蓝和层状氧化物等钠离子电池材料两大技术路线均已积累了相关产业技术,并有多家下游客户认

43、证中。湖南邦普正在进行磷酸铁锂生产线改产钠离子电池中试。中伟股份已具备千吨级钠电前驱体产量。图表21: 钠离子电池正极企业布局情况公司名称正极技术路线产品性能情况布局情况容百科技锰铁普鲁士白、层状氧化物体系、聚阴离子体系均有布局能量密度:110Wh/kg;循环次数: 6000 次;倍率性能: 优于 3C规划 2023 年层状氧化物正极材料产能 3.6 万吨/年;2025 年规划 10 万吨;普鲁士白供货宁德时代振华新材层状金属氧化物体系能量密度: 120-130Wh/kg;循环次数:2-4k 次;温和放电倍率 0.2-0.3C钠离子电池正极材料处于吨级送样阶段,生产线与现有三元材料兼容,深度合

44、作宁德时代湖南邦普未披露未披露磷酸铁锂生产线改产钠离子电池 (年产钠电正极 600 吨)建成后该产线可切换生产磷酸铁中伟股份未披露未披露钠系前驱体有 2-3 家客户,今年产量能达到千吨级,预计 2023 年上半年实现批量供货格林美层状金属氧化物体系、普鲁士蓝体系未披露拥有钠离子电池补钠的方法、钠离子电池及其制备方法等多项专利;在普鲁士蓝和层状氧化物等钠离子电池材料两大技术路线均有产业技术积累,多家下游客户认证中资料来源:各公司公告,截至2022 年 8 月金属氧化物的核心原材料是锰酸,普鲁士化合物的核心原材料是氰化物。过渡金属氧化物的主流体系是锰/铁/钴/镍/铜的氧化物,其中锰酸钠的性能和成本

45、的综合表现相较其他材料更好,目前发展较快。锰酸的主流制备路线是用氢氧化钾或碳酸钾和二氧化锰,国内主要生产二氧化锰企业包括湘潭电化、南方锰业、广西桂柳化工、贵州红星发展、西南能矿等。普鲁士类材料主要由亚铁氰化钠组成,氰化物在工业中使用广泛,在油漆、染料、橡胶等行业应用。钠电池领域将是氰化物未来的核心增量。普鲁士蓝类化合物无毒无害,但其原材料氰化物有毒,所以生产普鲁士化合物需要生产资质。目前具备氰化物生产资质的主要是海外企业,国内的主要生产商有美联新材的子公司营创三征、河北诚信、重庆紫光化工等公司。图表22: 各类正极原材料及供应商正极材料种类原材料供应商供应链情况层状过渡金属氧铁/锰/镍盐等二氧

46、化锰:红星发展、湘潭电化、南方锰业;铁锰等原材料供给充足,关键在于达到电池化物类镍资源:华友钴业级的纯度和成本控制能力聚阴离子化合物磷酸钒钠、焦磷酸铁钒化物:攀钢钒钛涉及到钒矿和钒储量情况,冶炼难度大类钠等普鲁士蓝/ 白类亚铁氰化钠氰化物:美联新材(营创三征)、河北诚信、电池级材料的生产需要重新建厂,涉及到氰化合物重庆紫光化工等化物需要有相关资质资料来源:公司公告,负极:碳基材料是重点方向碳基材料是性价比最高的钠离子电池负极路线。钠离子电池负极技术路线众多,主要有金属化合物、碳基材料、合金材料、非金属单质四类路线。碳基材料循环性能稳定,在钠中的嵌入度高。常见的碳基材料包括硬碳、软碳、石墨和类石

47、墨,石墨类碳材料主要通过使碳层膨胀或者选取相比配的电解质来提高材料储钠能力。图表23: 钠离子电池负极技术路线材料性质碳基材料软碳嵌钠平台低、容量高、循环寿命长、制备简单等突出优势,硬碳具有高可逆比容量、低电硬碳压等突出优势,软碳具有缺陷少、结晶度高、电导率高等特点金属化合物成本低、具有较高的比容量和钠储存电势而有潜力作为钠离子电池的阳极材料,其反应机理主要是可逆的氧化还原反应,但金属氧化物自身导电性较差以及在循环过程中会产生体积膨胀, 通常导致电极材料表现出较差的循环稳定性和倍率性能合金材料具有较高的比容量、良好的导电性,可在过充电后防止产生枝晶,延长了钠离子电池的使用寿命,为了减轻体积膨胀

48、,提高合金阳极的性能,人们主要集中于材料纳米化、引入碳基体复合、优化粘结剂和电解质添加剂等方面来进行研究非金属单质与碳同族的元素,磷和硅成为近年兴起的方向,研究成熟度还不高。其中黑磷有皱褶的层状结构,高导电等特点,但制备较难资料来源:CNKI钠离子电池关键电极材料研究进展,软碳和硬碳是商业化最快的碳基负极。软碳和硬碳主要区别在于 2800的高温热处理下是否可以充分石墨化。软碳和硬碳中都有石墨微晶,石墨微晶石墨无定形碳中呈现互相平行的堆积状态的细小石墨片,但软碳内部的微晶尺寸更大,具有更高的有序性,软碳经高温热处理会充分石墨化,在层间距离和微晶尺寸上的变化速度会显著大于硬碳,从而使软碳内部的层间

49、距减小,储钠能力大幅降低。硬碳对钠离子的储蓄方式主要是微晶插嵌和微孔吸附,与软碳相比,硬碳表现出更强的储钠能力以及更低的工作电位,更适用于钠离子电池负极材料。图表24: 钠离子电池碳基负极技术路线众多负极材料碳层间距(nm)比表面积(m/g)循环性能倍率性能石墨材料0.4330.22100mA/g 下 2000 圈后保持率 73.92%20mA/g,28.4mAh/g200mA/g,91mAh/g石墨烯材料0.365-0.37330.9200mA/g 下 250 圈后保持 93.3mAh/g40mAh/g,174.3mAh/g11000mA/g,95.6mAh/g软碳材料0.35620.220

50、mA/g、200mA/g 和 1000mA/g 下分别循环1000mA/g,114mAh/g10 圈、50 圈和 100 圈后保持率接近 100%硬碳材料0.413830mA/g 下 100 圈后保持 305mAh/g150mA/g,275mAh/g300mA/g,180mAh/g资料来源:CNKI钠离子电池负极材料的研发与发展,我们预计硬碳是主流材料,主要的负极企业均有技术储备。硬碳的来源广泛,主要包括有机物的热解、生物质材料、酚醛树脂等,具有来源广泛、价格低廉和环保等优点。相比于石墨,硬碳主要是在微观结构和制备工艺上进行改进,目前主要的负极企业均有技术储备,仍以璞泰来、贝特瑞、中科电气等负

51、极厂商为主,其中贝特瑞软硬碳已有量产产品。华阳集团从煤基出发,与中科海钠合作开发高温裂解无烟煤负极,储钠容量 220mAh/g,且成本较硬碳低,早期成本领先,远期看硬碳将凭借性能优势成为主流负极材料。图表25: 钠离子电池负极企业布局情况公司名称负极技术路线布局情况贝特瑞软碳 、硬碳均有已有量产硬碳、 软碳紫宸科技硬碳为主已积极进行钠离子电池产业的相关研发和布局工作杉杉股份硬碳为主2021 年在钠离子电池硬碳方面也已向相关电池企业进行了百公斤级的供货中科电气硬碳新型碳材料硬碳正在研发中华阳集团无烟煤(软硬碳混合)与中科海钠合作开发无烟煤负极,储钠容量 220mAh/g资料来源:Wind,负极集

52、流体:由铜箔变为铝箔钠离子电池集流体均为铝箔,现有铝箔企业受益。钠离子电池允许在负极使用金属铝作为集流体,能有效避免石墨基锂离子电池的过放电问题。集流体在电池中起到承载电池正负极和收集电子的作用,材料的选择上不仅要求导电性好,质地柔软且价格便宜,也需要在空气中性质稳定。综合来看,铝和铜是最适合做集流体的材料,正极电位较高,铜箔在高电位容易被氧化,所以在锂离子电池中,铜箔作为负极的集流体,而硬碳负极钠离子电池可放电 0V,不会出现铝溶解等任何问题。图表26: 目前锂电池铝箔的企业以及产能情况厂商20212022E2023E万顺新材456.5南山铝业33.84.3华北铝业346常铝股份0.60.60.6东阳光11.52.5云铝股份00.52神火股份012.5鼎胜新材121525合计23.631.449.4资料来源:Wind,电解液:六氟磷酸钠替换六氟磷酸锂钠离子电池与锂离子电池的电解液均以液态电解液为主,由于电解液的材料需要根据正极材料搭配,所以锂盐需要更换为钠盐,目前常

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论