多晶硅薄膜的制备方法_第1页
多晶硅薄膜的制备方法_第2页
多晶硅薄膜的制备方法_第3页
多晶硅薄膜的制备方法_第4页
多晶硅薄膜的制备方法_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、多晶硅薄膜的制备方法Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】多 晶 硅 薄 膜 的 制 备 方 法免费!免费获得在我站的广告2008-12-26 20:43:46作者:leilei来源: 希萌光伏商务网多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成 本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶 硅薄膜.多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成 本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶 硅薄膜的制备工艺可分为两大类:一

2、类是高温工艺,制备过程中温度高于600笆, 衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温 度低于600C,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复 杂。目前制备多晶硅薄膜的方法主要有如下几种:低压化学气相沉积(LPCVD)这是一种直接生成多晶硅的方法。LPCVD是集成电路中所用多晶硅薄膜的制备 中普遍采用的标准方法,具有生长速度快,成膜致密、均匀、装片容量大等特 点。多晶硅薄膜可采用硅烷气体通过LPCVD法直接沉积在衬底上,典型的沉积参 数是:硅烷压力为,沉积温度Td=580630C,生长速率510nm/min。由于 沉积温度较高,如普通玻璃的软化温度

3、处于500600C,则不能采用廉价的普 通玻璃而必须使用昂贵的石英作衬底。LPCVD法生长的多晶硅薄膜,晶粒具有择优取向,形貌呈“”字形,内含高密 度的微挛晶缺陷,且晶粒尺寸小,载流子迁移率不够大而使其在器件应用方面受到一定限制。虽然减少硅烷压力有助于增大晶粒尺寸,但往往伴随着表面粗糙度 的增加,对载流子的迁移率与器件的电学稳定性产生不利影响。固相晶化(SPC)所谓固相晶化,是指非晶固体发生晶化的温度低于其熔融后结晶的温度。这是 一种间接生成多晶硅的方法,先以硅烷气体作为原材料,用LPCVD方法在550笆 左右沉积a-Si:H薄膜,然后将薄膜在600笆以上的高温下使其熔化,再在温度稍 低的时候

4、出现晶核,随着温度的降低熔融的硅在晶核上继续晶化而使晶粒增大转 化为多晶硅薄膜。使用这种方法,多晶硅薄膜的晶粒大小依赖于薄膜的厚度和结 晶温度。退火温度是影响晶化效果的重要因素,在700笆以下的退火温度范围 内,温度越低,成核速率越低,退火时间相等时所能得到的晶粒尺寸越大;而在 700笆以上,由于此时晶界移动引起了晶粒的相互吞并,使得在此温度范围内, 晶粒尺寸随温度的升高而增大。经大量研究表明,利用该方法制得的多晶硅晶粒 尺寸还与初始薄膜样品的无序程度密切相关,等人对初始材料的沉积条件对固相 晶化的影响进行了研究,发现初始材料越无序,固相晶化过程中成核速率越低, 晶粒尺寸越大。由于在结晶过程中

5、晶核的形成是自发的,因此,SPC多晶硅薄膜 晶粒的晶面取向是随机的。相邻晶粒晶面取向不同将形成较高的势垒,需要进行 氢化处理来提高SPC多晶硅的性能。这种技术的优点是能制备大面积的薄膜,晶 粒尺寸大于直接沉积的多晶硅。可进行原位掺杂,成本低,工艺简单,易于形成 生产线。由于SPC是在非晶硅熔融温度下结晶,属于高温晶化过程,温度高于 600C,通常需要1100C左右,退火时间长达10个小时以上,不适用于玻璃基 底,基底材料采用石英或单晶硅,用于制作小尺寸器件,如液晶光阀、摄像机取 景器等。准分子激光晶化(ELA)激光晶化相对于固相晶化制备多晶硅来说更为理想,其利用瞬间激光脉冲产生 的高能量入射到

6、非晶硅薄膜表面,仅在薄膜表层100nm厚的深度产生热能效应, 使a-Si薄膜在瞬间达到1000C左右,从而实现a-Si向p-Si的转变。在此过程 中,激光脉冲的瞬间(1550ns)能量被a-Si薄膜吸收并转化为相变能,因此, 不会有过多的热能传导到薄膜衬底,合理选择激光的波长和功率,使用激光加热 就能够使a-Si薄膜达到熔化的温度且保证基片的温度低于450C,可以采用玻 璃基板作为衬底,既实现了 p-Si薄膜的制备,乂能满足LCD及OEL对透明衬底 的要求。其主要优点为脉冲宽度短(1550ns),衬底发热小。通过选择还可获 得混合晶化,即多晶硅和非晶硅的混合体。准分子激光退火晶化的机理:激光辐

7、 射到a-Si的表面,使其表面在温度到达熔点时即达到了晶化域值能量密度Ec。 a-Si在激光辐射下吸收能量,激发了不平衡的电子-空穴对,增加了自由电子的 导电能量,热电子-空穴对在热化时间内用无辐射复合的途径将自己的能量传给 晶格,导致近表层极其迅速的升温,由于非晶硅材料具有大量的隙态和深能级, 无辐射跃迁是主要的复合过程,因而具有较高的光热转换效率,若激光的能量密 度达到域值能量密度Ec时,即半导体加热至熔点温度,薄膜的表面会熔化,熔 化的前沿会以约10m/s的速度深入材料内部,经过激光照射,薄膜形成一定深度 的融层,停止照射后,融层开始以1081010K/s的速度冷却,而固相和液相之 间的

8、界面将以12m/s的速度回到表面,冷却之后薄膜晶化为多晶,随着激光能 量密度的增大,晶粒的尺寸增大,当非晶薄膜完全熔化时,薄膜晶化为微晶或多 晶,若激光能量密度小于域值能量密度Ec,即所吸收的能量不足以使表面温度升 至熔点,则薄膜不发生晶化。一般情况下,能量密度增大,晶粒增大,薄膜的迁移率相应增大,当Si膜接近全部熔化时,晶粒最大。但能量受激光器的限制,不 能无限增大,太大的能量密度反而令迁移率下降。激光波长对晶化效果影响也很 大,波长越长,激光能量注入Si膜越深,晶化效果越好。ELA法制备的多晶硅薄膜晶粒大、空间选择性好,掺杂效率高、晶内缺陷少、 电学特性好、迁移率高达到400cm2/,是目

9、前综合性能最好的低温多晶硅薄膜。 工艺成熟度高,已有大型的生产线设备,但它也有自身的缺点,晶粒尺寸对激光 功率敏感,大面积均匀性较差。重复性差、设备成本高,维护复杂。快速热退火(RTA)一般而言,快速退火处理过程包含三个阶段:升温阶段、稳定阶段和冷却阶 段。当退火炉的电源一打开,温度就随着时间而上升,这一阶段称为升温阶段。 单位时间内温度的变化量是很容易控制的。在升温过程结束后,温度就处于一个 稳定阶段。最后,当退火炉的电源关掉后,温度就随着时间而降低,这一阶段称 为冷却阶段。用含氢非晶硅作为初始材料,进行退火处理。平衡温度控制在 600C以上,纳米硅晶粒能在非晶硅薄膜中形成,而且所形成的纳米

10、硅晶粒的大 小随着退火过程中的升温快慢而变化。在升温过程中,若单位时间内温度变化量 较大时(如100C/s),则所形成纳米硅晶粒较小15nm);若单位时间内温度变化 量较小(如1C/s),则纳米硅粒较大(2346nm)。进一步的实验表明:延长退火 时间和提高退火温度并不能改变所形成的纳米硅晶粒的大小;而在退火时,温度 上升快慢直接影响着所形成的纳米硅晶粒大小。为了弄清楚升温量变化快慢对所 形成的纳米硅大小晶粒的影响,采用晶体生长中成核理论。在晶体生长中需要两 步:第一步是成核,第二步是生长。也就是说,在第一步中需要足够量的生长仔 晶。结果显示:升温快慢影响所形成的仔晶密度。若单位时间内温度变化

11、量大,则产生的仔晶密度大;反之,若单位时间内温度变化量小,则产生的仔晶密度 小。RTA退火时升高退火温度或延长退火时间并不能消除薄膜中的非晶部分,薛 清等人提出一种从非晶硅中分形生长出纳米硅的生长机理:分形生长。从下到 上,只要温度不太高以致相邻的纳米硅岛不熔化,那么即使提高退火温度或延长 退火时间都不能完全消除其中的非晶部分。RTA退火法制备的多晶硅晶粒尺寸小,晶体内部晶界密度大,材料缺陷密度 高,而且属于高温退火方法,不适合于以玻璃为衬底制备多晶硅。等离子体增强化学反应气相沉积(PECVD)等离子体增强化学反应气相沉积(PECVD)法是利用辉光放电的电子来激活化 学气相沉积反应的。起初,气

12、体由于受到紫外线等高能宇宙射线的辐射,总不可 避免的有轻微的电离,存在着少量的电子。在充有稀薄气体的反应容器中引进激 发源(例如,直流高压、射频、脉冲电源等),电子在电场的加速作用下获得能 量,当它和气体中的中性粒子发生非弹性碰撞时,就有可能使之产生二次电子, 如此反复的进行碰撞及电离,结果将产生大量的离子和电子。由于其中正负粒子 数目相等。故称为等离子体,并以发光的形式释放出多余的能量,即形成“辉 光”。在等离子体中,由于电子和离子的质量相差悬殊,二者通过碰撞交换能量 的过程比较缓慢,所以在等离子体内部各种带电粒子各自达到其热力学平衡状 态,于是在这样的等离子体中将没有统一的温度,就只有所谓

13、的电子温度和离子 温度。此时电子的温度可达104C,而分子、原子、离子的温度却只有25 300C。所以,从宏观上来看,这种等离子的温度不高,但其内部电子却处于高 能状态,具有较高的化学活性。若受激发的能量超过化学反应所需要的热能激 活,这时受激发的电子能量(110eV)足以打开分子键,导致具有化学活性的物质产生。因此,原来需要高温下才能进行的化学反应,通过放电等离子体的作 用,在较低温度下甚至在常温下也能够发生。PECVD法沉积薄膜的过程可以概括 为三个阶段:分解产生活性粒子Si、H、SiH2和SiH3等;2.活性粒子在衬底表面的吸附和扩散;3.在衬底上被吸附的活性分子在表面上发生反应生成Po

14、ly-Si层,并放出 H2;研究表面,在等离子体辅助沉积过程中,离子、荷电集团对沉积表面的轰击 作用是影响结晶质量的重要因素之一。克服这种影响是通过外加偏压抑制或增 强。对于采用PECVD技术制备多晶体硅薄膜的晶化过程,目前有两种主要的观 点:一种认为是活性粒子先吸附到衬底表面,再发生各种迁移、反应、解离等表 面过程,从而形成晶相结构,因此,衬底的表面状态对薄膜的晶化起到非常重要的 作用;另一种认为是空间气相反应对薄膜的低温晶化起到更为重要的作用,即具 有晶相结构的颗粒首先在空间等离子体区形成,而后再扩散到衬底表面长大成多 晶膜。对于SiH4:H2气体系统,有研究表明,在高氢掺杂的条件下,当用

15、RFPECVD 的方法沉积多晶硅薄膜时,必须采用衬底加热到600笆以上的办法,才能促进最初 成长阶段晶核的形成。多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成 本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶 硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600笆, 衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温 度低于600C,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复 杂。目前制备多晶硅薄膜的方法主要有如下几种:低压化学气相沉积(LPCVD)这是一种直接生成多晶硅的方法。LPCVD是集成电

16、路中所用多晶硅薄膜的制 备中普遍采用的标准方法,具有生长速度快,成膜致密、均匀、装片容量大等特 点。多晶硅薄膜可采用硅烷气体通过LPCVD法直接沉积在衬底上,典型的沉积参 数是:硅烷压力为,沉积温度Td=580630C,生长速率510nm/min。由于 沉积温度较高,如普通玻璃的软化温度处于500600C,则不能采用廉价的普通 玻璃而必须使用昂贵的石英作衬底。LPCVD法生长的多晶硅薄膜,晶粒具有择优取向,形貌呈“”字形,内含高 密度的微挛晶缺陷,且晶粒尺寸小,载流子迁移率不够大而使其在器件应用方面 受到一定限制。虽然减少硅烷压力有助于增大晶粒尺寸,但往往伴随着表面粗糙 度的增加,对载流子的迁

17、移率与器件的电学稳定性产生不利影响。固相晶化(SPC)所谓固相晶化,是指非晶固体发生晶化的温度低于其熔融后结晶的温度。这 是一种间接生成多晶硅的方法,先以硅烷气体作为原材料,用LPCVD方法在 550C左右沉积a-Si:H薄膜,然后将薄膜在600C以上的高温下使其熔化,再在 温度稍低的时候出现晶核,随着温度的降低熔融的硅在晶核上继续晶化而使晶粒 增大转化为多晶硅薄膜。使用这种方法,多晶硅薄膜的晶粒大小依赖于薄膜的厚 度和结晶温度。退火温度是影响晶化效果的重要因素,在700C以下的退火温度 范围内,温度越低,成核速率越低,退火时间相等时所能得到的晶粒尺寸越大; 而在700C以上,由于此时晶界移动

18、引起了晶粒的相互吞并,使得在此温度范围 内,晶粒尺寸随温度的升高而增大。经大量研究表明,利用该方法制得的多晶硅 晶粒尺寸还与初始薄膜样品的无序程度密切相关,等人对初始材料的沉积条件对 固相晶化的影响进行了研究,发现初始材料越无序,固相晶化过程中成核速率越 低,晶粒尺寸越大。由于在结晶过程中晶核的形成是自发的,因此,SPC多晶硅 薄膜晶粒的晶面取向是随机的。相邻晶粒晶面取向不同将形成较高的势垒,需要 进行氢化处理来提高SPC多晶硅的性能。这种技术的优点是能制备大面积的薄 膜,晶粒尺寸大于直接沉积的多晶硅。可进行原位掺杂,成本低,工艺简单,易 于形成生产线。由于SPC是在非晶硅熔融温度下结晶,属于

19、高温晶化过程,温度 高于600C,通常需要1100C左右,退火时间长达10个小时以上,不适用于玻 璃基底,基底材料采用石英或单晶硅,用于制作小尺寸器件,如液晶光阀、摄像 机取景器等。准分子激光晶化(ELA)激光晶化相对于固相晶化制备多晶硅来说更为理想,其利用瞬间激光脉冲产 生的高能量入射到非晶硅薄膜表面,仅在薄膜表层100nm厚的深度产生热能效 应,使a-Si薄膜在瞬间达到1000C左右,从而实现a-Si向p-Si的转变。在此 过程中,激光脉冲的瞬间(1550ns)能量被a-Si薄膜吸收并转化为相变能,因 此,不会有过多的热能传导到薄膜衬底,合理选择激光的波长和功率,使用激光 加热就能够使a-

20、Si薄膜达到熔化的温度且保证基片的温度低于450C,可以采 用玻璃基板作为衬底,既实现了 p-Si薄膜的制备,乂能满足LCD及OEL对透明 衬底的要求。其主要优点为脉冲宽度短(1550ns),衬底发热小。通过选择还 可获得混合晶化,即多晶硅和非晶硅的混合体。准分子激光退火晶化的机理:激 光辐射到a-Si的表面,使其表面在温度到达熔点时即达到了晶化域值能量密度 Ec。a-Si在激光辐射下吸收能量,激发了不平衡的电子-空穴对,增加了自由电 子的导电能量,热电子-空穴对在热化时间内用无辐射复合的途径将自己的能量传给晶格,导致近表层极其迅速的升温,由于非晶硅材料具有大量的隙态和深能 级,无辐射跃迁是主

21、要的复合过程,因而具有较高的光热转换效率,若激光的能 量密度达到域值能量密度Ec时,即半导体加热至熔点温度,薄膜的表面会熔 化,熔化的前沿会以约10m/s的速度深入材料内部,经过激光照射,薄膜形成一 定深度的融层,停止照射后,融层开始以1081010K/s的速度冷却,而固相和 液相之间的界面将以12m/s的速度回到表面,冷却之后薄膜晶化为多晶,随着 激光能量密度的增大,晶粒的尺寸增大,当非晶薄膜完全熔化时,薄膜晶化为微 晶或多晶,若激光能量密度小于域值能量密度Ec,即所吸收的能量不足以使表面 温度升至熔点,则薄膜不发生晶化。一般情况下,能量密度增大,晶粒增大,薄膜 的迁移率相应增大,当Si膜接

22、近全部熔化时,晶粒最大。但能量受激光器的限 制,不能无限增大,太大的能量密度反而令迁移率下降。激光波长对晶化效果影 响也很大,波长越长,激光能量注入Si膜越深,晶化效果越好。ELA法制备的多晶硅薄膜晶粒大、空间选择性好,掺杂效率高、晶内缺陷 少、电学特性好、迁移率高达到400cm2/,是目前综合性能最好的低温多晶硅薄 膜。工艺成熟度高,已有大型的生产线设备,但它也有自身的缺点,晶粒尺寸对 激光功率敏感,大面积均匀性较差。重复性差、设备成本高,维护复杂。快速热退火(RTA)一般而言,快速退火处理过程包含三个阶段:升温阶段、稳定阶段和冷却阶 段。当退火炉的电源一打开,温度就随着时间而上升,这一阶段

23、称为升温阶段。 单位时间内温度的变化量是很容易控制的。在升温过程结束后,温度就处于一个 稳定阶段。最后,当退火炉的电源关掉后,温度就随着时间而降低,这一阶段称 为冷却阶段。用含氢非晶硅作为初始材料,进行退火处理。平衡温度控制在600C以上,纳米硅晶粒能在非晶硅薄膜中形成,而且所形成的纳米硅晶粒的大 小随着退火过程中的升温快慢而变化。在升温过程中,若单位时间内温度变化量 较大时(如100C/s),则所形成纳米硅晶粒较小15nm);若单位时间内温度变化 量较小(如1C/s),则纳米硅粒较大(2346nm)。进一步的实验表明:延长退火 时间和提高退火温度并不能改变所形成的纳米硅晶粒的大小;而在退火时

24、,温度 上升快慢直接影响着所形成的纳米硅晶粒大小。为了弄清楚升温量变化快慢对所 形成的纳米硅大小晶粒的影响,采用晶体生长中成核理论。在晶体生长中需要两 步:第一步是成核,第二步是生长。也就是说,在第一步中需要足够量的生长仔 晶。结果显示:升温快慢影响所形成的仔晶密度。若单位时间内温度变化量大, 则产生的仔晶密度大;反之,若单位时间内温度变化量小,则产生的仔晶密度 小。RTA退火时升高退火温度或延长退火时间并不能消除薄膜中的非晶部分,薛 清等人提出一种从非晶硅中分形生长出纳米硅的生长机理:分形生长。从下到 上,只要温度不太高以致相邻的纳米硅岛不熔化,那么即使提高退火温度或延长 退火时间都不能完全

25、消除其中的非晶部分。RTA退火法制备的多晶硅晶粒尺寸小,晶体内部晶界密度大,材料缺陷密度 高,而且属于高温退火方法,不适合于以玻璃为衬底制备多晶硅。等离子体增强化学反应气相沉积(PECVD)等离子体增强化学反应气相沉积(PECVD )法是利用辉光放电的电子来激活 化学气相沉积反应的。起初,气体由于受到紫外线等高能宇宙射线的辐射,总不 可避免的有轻微的电离,存在着少量的电子。在充有稀薄气体的反应容器中引进 激发源(例如,直流高压、射频、脉冲电源等),电子在电场的加速作用下获得 能量,当它和气体中的中性粒子发生非弹性碰撞时,就有可能使之产生二次电子,如此反复的进行碰撞及电离,结果将产生大量的离子和

26、电子。由于其中正负 粒子数目相等。故称为等离子体,并以发光的形式释放出多余的能量,即形成“辉光”。在等离子体中,由于电子和离子的质量相差悬殊,二者通过碰撞交换 能量的过程比较缓慢,所以在等离子体内部各种带电粒子各自达到其热力学平衡 状态,于是在这样的等离子体中将没有统一的温度,就只有所谓的电子温度和离 子温度。此时电子的温度可达104C,而分子、原子、离子的温度却只有25 300C。所以,从宏观上来看,这种等离子的温度不高,但其内部电子却处于高 能状态,具有较高的化学活性。若受激发的能量超过化学反应所需要的热能激 活,这时受激发的电子能量(110eV)足以打开分子键,导致具有化学活性的 物质产

27、生。因此,原来需要高温下才能进行的化学反应,通过放电等离子体的作 用,在较低温度下甚至在常温下也能够发生。PECVD法沉积薄膜的过程可以概括 为三个阶段:分解产生活性粒子Si、H、SiH2和SiH3等;活性粒子在衬底表面的吸附和扩散;在衬底上被吸附的活性分子在表面上发生反应生成Poly-Si层,并放出 H2;研究表面,在等离子体辅助沉积过程中,离子、荷电集团对沉积表面的轰击 作用是影响结晶质量的重要因素之一。克服这种影响是通过外加偏压抑制或增 强。对于采用PECVD技术制备多晶体硅薄膜的晶化过程,目前有两种主要的观点:一种认为是活性粒子先吸附到衬底表面,再发生各种迁移、反应、解离等表 面过程,

28、从而形成晶相结构,因此,衬底的表面状态对薄膜的晶化起到非常重要的 作用;另一种认为是空间气相反应对薄膜的低温晶化起到更为重要的作用,即具 有晶相结构的颗粒首先在空间等离子体区形成,而后再扩散到衬底表面长大成多 晶膜。对于SiH4:H2气体系统,有研究表明,在高氢掺杂的条件下,当用RFPECVD 的方法沉积多晶硅薄膜时,必须采用衬底加热到600笆以上的办法,才能促进最初 成长阶段晶核的形成。而当衬底温度小于300笆时,只能形成氢化非晶硅(a-Si:H) 薄膜。以SiH4:H2为气源沉积多晶硅温度较高,一般高于600C,属于高温工 艺,不适用于玻璃基底。目前有报道用SiC14:H2或者SiF4:H2为气源沉积多晶 硅,温度较低,在300C左右即可获得多晶硅,但用CVD法制备得多晶硅晶粒尺 寸小,一般不超过50nm,晶内缺陷多,晶界多

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论