




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Word 高一数学知识点总结 高一数学学问点总结【通用6篇】由第八区为您收集整理,盼望在您写作【人教版高一数学】时能有一些参考与启发。 人教版高一数学学问点总结 篇一 1、函数零点的定义 (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。 (2)方程0)(xf有实根?函数()yfx的图像与x轴有交点?函数()yfx有零点。因此推断一个函数是否有零点,有几个零点,就是推断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是()fx的零点(3)变号零点与不变号零点 若函数()fx在零点0 x左右两侧的函数值异号,则称该零点为函数(
2、)fx的变号零点。若函数()fx在零点0 x左右两侧的函数值同号,则称该零点为函数()fx的不变号零点。 若函数()fx在区间,ab上的图像是一条连续的曲线,则0)()( 2、函数零点的判定 (1)零点存在性定理:假如函数)(xfy在区间,ba上的图象是连续不断的曲线,并且有()()0fafb,那么,函数)(xfy在区间,ab内有零点,即存在),(0bax,使得0)(0 xf,这个0 x也就是方程0)(xf的根。 (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法 代数法:函数)(xfy的零点?0)(xf的根;(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象
3、联系起来,并利用函数的性质找出零点。 (3)零点个数确定 0)(xfy有2个零点?0)(xf有两个不等实根;0)(xfy有1个零点?0)(xf有两个相等实根;0)(xfy无零点?0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定。 3、二分法 (1)二分法的定义:对于在区间,ab上连续不断且()()0fafb的函数()yfx,通过不断地把函数()yfx的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点的近似值的方法叫做二分法; (2)用二分法求方程的近似解的步骤: 确定区间,ab,验证()()0fafb,给定精确度e; 求区间(,)ab的中点c;计算(
4、)fc; ()若()0fc,则c就是函数的零点; ()若()()0fafc,则令bc(此时零点0(,)xac);()若()()0fcfb,则令ac(此时零点0(,)xcb); 推断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复至步。 人教版高一数学学问点总结 篇二 集合的有关概念 1)集合(集):某些指定的对象集在一起就成为一个集合(集)。其中每一个对象叫元素 留意:集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则ab)和无序性(a,b与b,a
5、表示同一个集合)。 集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必需符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法 3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N 子集、交集、并集、补集、空集、全集等概念 1)子集:若对xA都有xB,则AB(或AB); 2)真子集:AB且存在x0B但x0A;记为AB(或,且) 3)交集:AB=x|xA且xB 4)并集:AB=x|xA或xB 5)补集:CUA=x|xA但xU 留意:A,若A?,则?A; 若且,则A=B(等集) 集合与元素 把握有关的术语和符号,特殊要留意以下的符号:(1)与、?
6、的区分;(2)与的区分;(3)与的区分。 子集的几个等价关系 AB=AAB;AB=BAB;ABCuACuB; ACuB=空集CuAB;CuAB=IAB。 交、并集运算的性质 AA=A,A?=?,AB=BA;AA=A,A?=A,AB=BA; Cu(AB)=CuACuB,Cu(AB)=CuACuB; 有限子集的个数: 设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。 练习题: 已知集合M=x|x=m+,mZ,N=x|x=,nZ,P=x|x=,pZ,则M,N,P满意关系() A)M=NPB)MN=PC)MNPD)NPM 分析一:从推断元素的共性与区分入手。 解答一
7、:对于集合M:x|x=,mZ;对于集合N:x|x=,nZ 对于集合P:x|x=,pZ,由于3(n-1)+1和3p+1都表示被3除余1的数,而6m+1表示被6除余1的数,所以MN=P,故选B。 人教版高一数学学问点总结 篇三 直线和平面垂直 直线和平面垂直的定义:假如一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面相互垂直。直线a叫做平面的垂线,平面叫做直线a的垂面。 直线与平面垂直的判定定理:假如一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。 直线与平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行没有公共点 直线和平面
8、平行的定义:假如一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。 直线和平面平行的判定定理:假如平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 直线和平面平行的性质定理:假如一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 多面体 1、棱柱 棱柱的定义:有两个面相互平行,其余各面都是四边形,并且每两个四边形的公共边都相互平行,这些面围成的几何体叫做棱柱。 棱柱的性质 (1)侧棱都相等,侧面是平行四边形 (2)两个底面与平行于底面的截面是全等的多边形 (3)过不相邻的两条侧棱的截面(对角面)是平行四边形 2、棱锥 棱锥的
9、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥 棱锥的性质: (1)侧棱交于一点。侧面都是三角形 (2)平行于底面的截面与底面是相像的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方 3、正棱锥 正棱锥的定义:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。 正棱锥的性质: (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。 (3)多个特别的直角三角形 a、相邻两侧棱相互垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。 b、四周体中有三
10、对异面直线,若有两对相互垂直,则可得第三对也相互垂直。且顶点在底面的射影为底面三角形的垂心。 高一数学学问点总结最新 篇四 集合一、集合有关概念 1、集合的含义 2、集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合H,A,P,Y (3)元素的无序性:如:a,b,c和a,c,b是表示同一个集合 3、集合的表示:如:我校的篮球队员,太平洋,大西洋,印度洋,北冰洋 (1)用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,5 (2)集合的表示方法:列举法与描述法。 留意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正
11、整数集N或N+整数集Z有理数集Q实数集R 1)列举法:a,b,c 2)描述法:将集合中的元素的公共属性描述出来,写在大 括号内表示集合的方法。xR|x-32,x|x-32 3)语言描述法:例:不是直角三角形的三角形 4)Venn图: 4、集合的分类: (1)有限集含有有限个元素的集合 (2)无限集含有无限个元素的集合 (3)空集不含任何元素的集合例:x|x2=-5 关于集合的概念: (1)确定性:作为一个集合的元素,必需是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。 (2)互异性:对于一个给定的集合,集合中的元素肯定是不同
12、的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。 (3)无序性:推断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。 集合可以依据它含有的元素的个数分为两类: 含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 非负整数全体构成的集合,叫做自然数集,记作N; 在自然数集内排解0的集合叫做正整数集,记作N+或N; 整数全体构成的集合,叫做整数集,记作Z; 有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。) 实数全体构成的集合,叫做实数集,记作R。(包
13、括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。) 1、列举法:假如一个集合是有限集,元素又不太多,经常把集合的全部元素都列举出来,写在花括号“”内表示这个集合,例如,由两个元素0,1构成的集合可表示为0,1。 有些集合的元素较多,元素的排列又呈现肯定的规律,在不致于发生误会的状况下,也可以列出几个元素作为代表,其他元素用省略号表示。 例如:不大于100的自然数的全体构成的集合,可表示为0,1,2,3,100。 无限集有时也用上述的列举法表示,例如,自然数集N可表示为1,2,3,n,。 2、描述法:一种更有效地描述集合的
14、方法,是用集合中元素的特征性质来描述。 例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0” 而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为 xRx能被2整除,且大于0或xRx=2n,nN+, 大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。 一般地,假如在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为xIp(x) 它表示集合A是由集合
15、I中具有性质p(x)的全部元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。 例如:集合A=xRx2-1=0的特征是X2-1=0 人教版高一数学学问点总结 篇五 圆的方程定义: 圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个自立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。 直线和圆的位置关系: 1、直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式来争论位置关系。 0,直线和圆相交。=0,直线和圆相切。0,直线和圆相离。
16、 方法二是几何的观点,即把圆心到直线的距离d和半径R的大小加以比较。 dR,直线和圆相离。 2、直线和圆相切,这类问题主要是求圆的切线方程。求圆的切线方程主要可分为已知斜率k或已知直线上一点两种状况,而已知直线上一点又可分为已知圆上一点和圆外一点两种状况。 3、直线和圆相交,这类问题主要是求弦长以及弦的中点问题。 切线的性质 圆心到切线的距离等于圆的半径; 过切点的半径垂直于切线; 经过圆心,与切线垂直的直线必经过切点; 经过切点,与切线垂直的直线必经过圆心; 当一条直线满意 (1)过圆心; (2)过切点; (3)垂直于切线三共性质中的两个时,第三共性质也满意。 切线的判定定理 经过半径的外端
17、点并且垂直于这条半径的直线是圆的切线。 切线长定理 从圆外一点作圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角。 圆锥曲线性质: 一、圆锥曲线的定义 1、椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。 2、双曲线:到两个定点的距离的差的肯定值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即。 3、圆锥曲线的统肯定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。 高一数学学问点总结最新 篇六 内容子交并补集,还有幂指对函数。性质奇偶与增减,观看图象最明显。 复合函数式消失,性质乘法法则辨,若要具
18、体证明它,还须将那定义抓。 指数与对数函数,学校学习方法,两者互为反函数。底数非1的正数,1两边增减变故。 函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种状况求交集。 两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解特别有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 形如y=k/x(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度船舶租赁抵押物变更及租金支付协议
- 黄桥初一月考数学试卷
- 初二体育教学示范课计划
- 2025年成人教育线上学习模式下的跨文化教学与沟通技巧
- 今年高考各省数学试卷
- 2025年小学劳动教师新学期信息化建设计划
- 短视频平台内容监管与行业监管政策实施路径优化策略优化策略优化研究报告
- 时尚零售行业快时尚模式变革下的时尚产品设计与市场接受度提升报告
- 2025年3D打印建筑技术成果在智能交通建筑中的应用鉴定报告
- 2025年交通运输类项目发展计划
- 食堂改造维修工程监理规划、细则
- 尿素生产原理工艺流程及工艺指标
- 算法艺术与信息学竞赛题目完全解析
- 浙江建德正发药业年产2万吨原料药碳酸钙、2万吨食品级重钙、3000吨复配食品添加碳酸钙颗粒项目环评报告
- 2023年浙大控制系保研面试问题集
- 数字游戏设计概论课件
- 口腔科的无菌操作技术及要求
- 学校财务人员竞聘笔试题及答案解析
- 水泥厂危险源辨识
- 路堑开挖工程检验批质量验收记录
- 胫骨横向骨搬移在糖尿病足治疗中的运用
评论
0/150
提交评论