高一数学教案最新例文_第1页
高一数学教案最新例文_第2页
高一数学教案最新例文_第3页
高一数学教案最新例文_第4页
高一数学教案最新例文_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第 PAGE26 页 共 NUMPAGES26 页高一数学教案最新例文高一数学教案最新例文1教学目的1.使学生掌握指数函数的概念,图象和性质.(1)能根据定义判断形如什么样的函数是指数函数,理解对底数的限制条件的合理性,明确指数函数的定义域.(2)能在根本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质.(3)能利用指数函数的性质比较某些幂形数的大小,会利用指数函数的图象画出形如的图象.2.通过对指数函数的概念图象性质的学习,培养学生观察,分析p 归纳的才能,进一步体会数形结合的思想方法.3.通过对指数函数的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣

2、.使学生擅长从现实生活中数学的发现问题,解决问题.教学建议教材分析p (1)指数函数是在学生系统学习了函数概念,根本掌握了函数的性质的根底上进展研究的,它是重要的根本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的根底,同时在生活及消费实际中有着广泛的应用,所以指数函数应重点研究.(2)本节的教学重点是在理解指数函数定义的根底上掌握指数函数的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)指数函数是学生完全陌生的一类函数,对于这样的函数应怎样进展较为系统的理论研究是学生面临的重要问题,所以从指数函数的研究过程中得到相应的结论固然重要,但更为重要的

3、是要理解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于指数函数的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如等都不是指数函数.(2)对底数的限制条件的理解与认识也是认识指数函数的重要内容.假设有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用详细例子加以说明,因为对这个条件的认识不仅关系到对指数函数的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正理解它的由来.关于指数函数图象的绘制,虽然是用列表描点法,但在详细教学中应防止描点前的盲目列

4、表计算,也应防止盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,获得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案最新例文2教学目的1.掌握对数函数的概念,图象和性质,且在掌握性质的根底上能进展初步的应用.(1)能在指数函数及反函数的概念的根底上理解对数函数的定义,理解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.(2)能把握指数函数与对数函数的本质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.2.通过对数函数概念的

5、学习,树立互相联络互相转化的观点,通过对数函数图象和性质的学习,浸透数形结合,分类讨论等思想,注重培养学生的观察,分析p ,归纳等逻辑思维才能.3.通过指数函数与对数函数在图象与性质上的比照,对学生进展对称美,简洁美等审美教育,调动学生学习数学的积极性.教学建议教材分析p (1)对数函数又是函数中一类重要的根本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的根底上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完好,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工

6、具,是学生今后学习对数方程,对数不等式的根底.(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的根底上,故应成为教学的重点.(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.教法建议(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数

7、的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多项选择几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生考虑的方向.这样既增强了学生的参与意识又教给他们考虑问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而进步学习兴趣.高一数学教案最新例文3教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步理解“属于”关系的意义(3)使学生初步理解有限集、无限集、空集的意义教

8、学重点:集合的根本概念及表示方法教学难点:运用集合的两种常用表示方法列举法与描绘法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析p :1.集合是中学数学的一个重要的根本概念在小学数学中,就浸透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,根本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的根底把集合的初步知识与简易逻辑知识安排在高中数学的最开始,

9、是因为在高中数学中,这些知识与其他内容有着亲密联络,它们是学习、掌握和使用数学语言的根底例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描绘法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的根本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的根本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集

10、合,也简称集”这句话,只是对集合概念的描绘性说明教学过程:一、复习引入:1.简介数集的开展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人康托尔(德国数学家)(见附录4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.

11、定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N-或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是一样的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N-或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z-3、

12、元素对于集合的隶属关系(1)属于:假设a是集合A的元素,就说a属于A,记作aA(2)不属于:假设a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q“”的开口方向,不能把aA颠倒过来写三、练习题:1、教材P5练习1、22、以下各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)

13、(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2_4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(aZ,bZ)的数,求证:(1)当xN时,xG;(2)假设xG,yG,那么x+yG,而不一定属于集合G证明(1):在a+b(aZ,bZ)中,令a=xN,b=0,那么x=x+0-=a+bG,即xG证明(2):xG,yG,x=a+b(aZ,bZ),y=c+d(cZ,dZ)x+y=(a+b)+(c+d)=(a+c)+(b+d)aZ,bZ,cZ,dZ

14、(a+c)Z,(b+d)Zx+y=(a+c)+(b+d)G,又=且不一定都是整数,=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:高一数学教案最新例文4教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步理解“属于”关系的意义(3)使学生初步理解有限集、无限集、空集的意义教学重点:集合的根本概念及表示方法教学难点:运用集合的两种常用表示方法列举法与描绘法,正确表示一些简单的集合授课类型:新授课课时安排:1课

15、时教具:多媒体、实物投影仪内容分析p :1.集合是中学数学的一个重要的根本概念在小学数学中,就浸透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,根本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的根底把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着亲密联络,它们是学习、掌握和使用数学语言的根底例如,下一章讲函数的概念与性质,就离不开集合与逻

16、辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描绘法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的根本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的根本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描绘性说明教学过程:一、复习引入:1.简介数集的开展,复习公约数和最小公倍数,质数与和数;2.教材

17、中的章头引言;3.集合论的创始人康托尔(德国数学家)(见附录4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:

18、集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N-或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是一样的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N-或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z-3、元素对于集合的隶属关系(1)属于:假设a是集合A的元素,就说a属于A,记作aA(2)不属于:假设a不是集合A的元素,就说a不属于A,记作

19、4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、集合通常用大写的拉丁字母表示,如A、B、C、P、Q元素通常用小写的拉丁字母表示,如a、b、c、p、q“”的开口方向,不能把aA颠倒过来写三、练习题:1、教材P5练习1、22、以下各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2_4、由实数x,-x,|x|

20、,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(aZ,bZ)的数,求证:(1)当xN时,xG;(2)假设xG,yG,那么x+yG,而不一定属于集合G证明(1):在a+b(aZ,bZ)中,令a=xN,b=0,那么x=x+0-=a+bG,即xG证明(2):xG,yG,x=a+b(aZ,bZ),y=c+d(cZ,dZ)x+y=(a+b)+(c+d)=(a+c)+(b+d)aZ,bZ,cZ,dZ(a+c)Z,(b+d)Zx+y=(a+c)+(b+d)G,又=且不一定都是整数,=不一定属于集合G四、小结:本节课学习了以下内容:1.

21、集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(GeorgCantor,1845-1918)是德国数学家,集合论的1845年3月3日生于圣彼得堡,19_年1月6日病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一

22、些符合逻辑的但又荒唐的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在18741876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点可以和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了锋利冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来

23、自数学-们的宏大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神-症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放荣耀1897年举行的第一次国际数学家会议上,他的成就得到成认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最宏大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到抚慰和喜悦19_年1月6日,康托尔在一家精神病院去世集合论是现代数学的根底,康托尔在研究函数论时产生了探究无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进展了哲学的讨论,最终建立了较完善的集合理论,为现代数学的开展打下了坚实的根底康托尔创立了集合论作为实数理论,以致整个微积分

24、理论体系的根底克隆尼克(L.Kronecker,1823-1891),康托尔的教师,对康托尔表现了无微不至的关心他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家

25、魏尔(C.H.Her-mannWey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至疑心自己的工作是否可靠他恳求哈勒大学-把他的数学教授职位改为哲学教授职位安康状况逐渐恶化,19_年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问

26、题之一一般次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的根底上,利用群论的方法从系统构造的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联络起来,并在阿贝尔研究的根底上,进一步开展了他的思想,把全部问题转化成或者归结为置换群及其子群构造的分析p 上同时创立了具有划时代意义的数学分支群论,数学开展作出了重大奉献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最出色的数学家柯西作为这些论文的鉴定人在1830年1月18日

27、柯西曾方案对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以说明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否认

28、它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日分开了人间死因参加无意义的决斗受重伤1846年,他死后_年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的数学杂志高一数学教案最新例文5一、教学目的1.知识与技能:(1)通过实物操作,增强学生的直观感知。(2)能根据几何构造特征对空间物体进展分类。(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的构造特征。(4)会表示有关于几何体以及柱、锥、台的分类。2.过程与方法:(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何构造特征。(2)让学生观察、讨论、归纳、概括所学的知识。3.情感态度与价值观:(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时进步学生的观察才能。(2)培养学生的空间想象才能和抽象括才能。二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的构造特征。难点:柱、锥、台、球的构造特征的概括。三、教学用具(1)学法:观察、考虑、交流、讨论、概括。(2)实物模型、投影仪。四、教学过程(一)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论