




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图,A、B、C是O上的三点,BAC30,则BOC的大小是()A30B60C90D452已知O的半径为5,且圆心O到直线l的距离是方程x2-4x-12=0的一个根,则直线l与圆的位置关系是( )A相交 B相切 C相离 D无法确定3下列交通标志是中心对称图形的为()ABCD4如图是棋盘的一部分
2、,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )A(1,1)B(2,1)C(2,2)D(3,1)5某城年底已有绿化面积公顷,经过两年绿化,到年底增加到公顷,设绿化面积平均每年的增长率为,由题意所列方程正确的是( )ABCD6已知二次函数的图象如图所示,则下列说法正确的是( )A0B0C0D07我国古代数学著作增删算法统宗记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺设绳索长x尺,竿
3、长y尺,则符合题意的方程组是()ABCD8估计1的值在()A1和2之间B2和3之间C3和4之间D4和5之间9已知,代数式的值为( )A11B1C1D1110如果边长相等的正五边形和正方形的一边重合,那么1的度数是( )A30B15C18D20二、填空题(本大题共6个小题,每小题3分,共18分)11分式方程+=1的解为_.12如图,已知l1l2l3,相邻两条平行直线间的距离相等若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tan的值是_13分解因式:a3-12a2+36a=_14太极揉推器是一种常见的健身器材基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉
4、推器的部分数据进行了测量:如图,立柱AB的长为125cm,支架CD、CE的长分别为60cm、40cm,支点C到立柱顶点B的距离为25cm支架CD,CE与立柱AB的夹角BCD=BCE=45,转盘的直径FG=MN=60cm,D,E分别是FG,MN的中点,且CDFG,CEMN,则两个转盘的最低点F,N距离地面的高度差为_cm(结果保留根号)15如图,ABC内接于O,AB是O的直径,点D在圆O上,BDCD,AB10,AC6,连接OD交BC于点E,DE_16如图,在RtABC中,ACB=90,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=_cm三、解答题(共8题,共72分)17(8分)
5、某海域有A、B两个港口,B港口在A港口北偏西30方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75方向的C处,求:(1)C= ;(2)此时刻船与B港口之间的距离CB的长(结果保留根号)18(8分)解不等式组,并将解集在数轴上表示出来19(8分)已知:二次函数满足下列条件:抛物线y=ax2+bx与直线y=x只有一个交点;对于任意实数x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立(1)求二次函数y=ax2+bx的解析式;(2)若当-2xr(r0)时,恰有ty1.5r成立,求t和r的值20(8分)如图是某货站传送货物的平面示意
6、图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45改为30. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由(说明:的计算结果精确到0.1米,参考数据:1.41,1.73,2.24,2.45)21(8分) (1)计算:3tan30+|2|+()1(3)0(1)2018.(2)先化简,再求值:(x),其中x=,y=1.22(10分)如图,一次函数y=ax+b的图象与反比例函数的图象交于A,B两点,与X轴交于点C,与Y轴交于点D,已知,A(n,1),点B的坐标
7、为(2,m)(1)求反比例函数的解析式和一次函数的解析式;(2)连结BO,求AOB的面积;(3)观察图象直接写出一次函数的值大于反比例函数的值时x的取值范围是 23(12分)已知:正方形绕点顺时针旋转至正方形,连接.如图,求证:;如图,延长交于,延长交于,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角. 24先化简,再求值:,其中.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC=30,BOC=2BAC =60(同弧所对的圆周角是圆心角的一半),故
8、选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、C【解析】首先求出方程的根,再利用半径长度,由点O到直线a的距离为d,若dr,则直线与与圆相离.【详解】x2-4x-12=0,(x+2)(x-6)=0,解得:x1=-2(不合题意舍去),x2=6,点O到直线l距离是方程x2-4x-12=0的一个根,即为6,点O到直线l的距离d=6,r=5,dr,直线l与圆相离.故选:C【点睛】本题考核知识点:直线与圆的位置关系.解题关键点:理解直线与圆的位置关系的判定方法.3、C【解析】根据中心对称图形的定义即可解答【详解】解:A、属于轴对称图形,不
9、是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意故选C【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合4、B【解析】直接利用已知点坐标建立平面直角坐标系进而得出答案【详解】解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:棋子“炮”的坐标为(2,1),故答案为:B【点睛】本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键5、B【解析】先用含有x的式子表示2015年的绿化面积,进而用含有x的式子表示2016年的绿化面积,根据等
10、式关系列方程即可.【详解】由题意得,绿化面积平均每年的增长率为x,则2015年的绿化面积为300(1x),2016年的绿化面积为300(1x)(1x),经过两年的增长,绿化面积由300公顷变为363公顷.可列出方程:300(1x)2363.故选B.【点睛】本题主要考查一元二次方程的应用,找准其中的等式关系式解答此题的关键.6、B【解析】根据抛物线的开口方向确定a,根据抛物线与y轴的交点确定c,根据对称轴确定b,根据抛物线与x轴的交点确定b2-4ac,根据x=1时,y0,确定a+b+c的符号【详解】解:抛物线开口向上,a0,抛物线交于y轴的正半轴,c0,ac0,A错误;-0,a0,b0,B正确;
11、抛物线与x轴有两个交点,b2-4ac0,C错误;当x=1时,y0,a+b+c0,D错误;故选B【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定7、A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组【详解】设索长为x尺,竿子长为y尺,根据题意得:故选A【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键8、B【解析】根据,可得答案.【详解】解:,1的值在2和3之间.故选B.【点睛】
12、本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.9、D【解析】根据整式的运算法则,先利用已知求出a的值,再将a的值带入所要求解的代数式中即可得到此题答案.【详解】解:由题意可知:,原式故选:D【点睛】此题考查整式的混合运算,解题的关键在于利用整式的运算法则进行化简求得代数式的值10、C【解析】1的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数,进而求解【详解】正五边形的内角的度数是(5-2)180=108,正方形的内角是90,1=108-90=18故选C【点睛】本题考查了多边形的内角和定理、正五边形和正方形的性质,求得正五边形的内角的度数是关键二、
13、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】根据解分式方程的步骤,即可解答【详解】方程两边都乘以,得:,解得:,检验:当时,所以分式方程的解为,故答案为【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根12、【解析】如图,分别过点A,B作AE,BF,BD,垂足分别为E,F,D.ABC为等腰直角三角形,AC=BC,ACB=90,ACE+BCF=90.AE,BFCAE+ACE=90,CBF+BCF=90,CAE=BCF,ACE=CBF.CAE=BCF,AC=BC,ACE=CBF,ACECBF,CE=BF,AE=CF.
14、设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,tan=tanBAD=.点睛:分别过点A,B作AE,BF,BD,垂足分别为E,F,D,可根据ASA证明ACECBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;13、a(a-6)2【解析】原式提取a,再利用完全平方公式分解即可【详解】原式=a(a2-12a+36)=a(a-6)2, 故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键14、10【解析】作FP地面于P
15、,CJPF于J,FQPA交CD于Q,QHCJ于HNT地面于T解直角三角形求出FP、NT即可解决问题【详解】解:作FP地面于P,CJPF于J,FQPA交CD于Q,QHCJ于HNT地面于T由题意QDF,QCH都是等腰直角三角形,四边形FQHJ是矩形,DFDQ30cm,CQCDDQ603030cm,FJQH15cm,ACABBC12525100cm,PF(15100)cm,同法可求:NT(1005),两个转盘的最低点F,N距离地面的高度差为(15100)-(1005)=10故答案为: 10【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型15
16、、1【解析】先利用垂径定理得到ODBC,则BE=CE,再证明OE为ABC的中位线得到,入境计算ODOE即可【详解】解:BDCD,ODBC,BECE,而OAOB,OE为ABC的中位线,DEODOE531故答案为1【点睛】此题考查垂径定理,中位线的性质,解题的关键在于利用中位线的性质求解.16、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质三、解答题(共8题,共72分)1
17、7、(1)60;(2)【解析】(1)由平行线的性质以及方向角的定义得出FBA=EAB=30,FBC=75,那么ABC=45,又根据方向角的定义得出BAC=BAE+CAE=75,利用三角形内角和定理求出C=60;(2)作ADBC交BC于点D,解RtABD,得出BD=AD=30,解RtACD,得出CD=10,根据BC=BD+CD即可求解.解:(1)如图所示,EAB=30,AEBF,FBA=30,又FBC=75,ABC=45,BAC=BAE+CAE=75,C=60故答案为60; (2)如图,作ADBC于D, 在RtABD中,ABD=45,AB=60,AD=BD=30 在RtACD中,C=60,AD=
18、30,tanC=,CD=10, BC=BD+CD=30+10答:该船与B港口之间的距离CB的长为(30+10)海里 18、原不等式组的解集为4x1,在数轴上表示见解析【解析】分析:根据解一元一次不等式组的步骤,大小小大中间找,可得答案详解:解不等式,得x4,解不等式,得x1,把不等式的解集在数轴上表示如图,原不等式组的解集为4x1点睛:本题考查了解一元一次不等式组,利用不等式组的解集的表示方法是解题关键19、(1)y=x2+x;(2)t=-4,r=-1.【解析】(1)由联立方程组,根据抛物线y=ax2+bx与直线y=x只有一个交点可以求出b的值,由可得对称轴为x=1,从而得a的值,进而得出结论
19、;(2)进行分类讨论,分别求出t和r的值.【详解】(1)y=ax2+bx和y=x联立得:ax2+(b+1)x=0,=0得:(b-1)2=0,得b=1,对称轴为=1,=1,a=,y=x2+x.(2)因为y=x2+x=(x-1)2+,所以顶点(1,)当-2r1,且r0时,当x=r时,y最大=r2+r=1.5r,得r=-1, 当x=-2时,y最小=-4,所以,这时t=-4,r=-1.当r1时,y最大=,所以1.5r=, 所以r=,不合题意,舍去,综上可得,t=-4,r=-1.【点睛】本题考查二次函数综合题,解题的关键是理解题意,利用二次函数的性质解决问题20、(1)5.6(2)货物MNQP应挪走,理
20、由见解析【解析】(1)如图,作ADBC于点DRtABD中, AD=ABsin45=4在RtACD中,ACD=30AC=2AD=4 即新传送带AC的长度约为5.6米 (2)结论:货物MNQP应挪走 在RtABD中,BD=ABcos45=4 在RtACD中,CD=ACcos30= CB=CDBD=PC=PBCB 42.1=1.92 货物MNQP应挪走21、 (1)3;(2) xy,1【解析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】(1)3tan30+|2-|+()-
21、1-(3-)0-(-1)2018=3+2-+3-1-1,=+2+3-1-1,=3;(2)(x),=,=x-y,当x=,y=-1时,原式=+1=1【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法22、(1)y=;y=x;(2);(1)2x0或x1;【解析】(1)过A作AMx轴于M,根据勾股定理求出OM,得出A的坐标,把A得知坐标代入反比例函数的解析式求出解析式,吧B的坐标代入求出B的坐标,吧A、B的坐标代入一次函数的解析式,即可求出解析式(2)求出直线AB交y轴的交点坐标,即可求出OD,根据三角形面积公式求出即可(1)根据A、B的横坐标结合图象即可得出答案【详解】解:(1)过A作AMx轴于M,则AM=1,OA=,由勾股定理得:OM=1,即A的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储搬迁活动方案
- 仓库春节活动方案
- 仙林平安夜活动方案
- 代县餐饮活动策划方案
- 代账公司引流活动方案
- 以大带小活动方案
- 以茶会友活动策划方案
- 仲夏之夜活动方案
- 企业七夕活动策划方案
- 企业亲情服务日活动方案
- 福建省2025年6月普通高中学业水平合格性考试地理模拟卷二(含答案)
- 文明小学生主题班会课件
- 安全法生产试题及答案
- 购买私人地皮合同范本
- 2025年04月广东惠州市惠阳区教育局选调下属事业单位工作人员15人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 短期护工合同协议书
- 2024-2025学年人教版四年级数学下学期期末试卷(含答案)
- 2025年安全生产月主题培训课件:如何查找身边安全隐患
- 涉及民族因素矛盾纠纷突发事件应急预案
- 2024年重庆市高考物理试卷(含答案解析)
- JBT 1306-2024 电动单梁起重机(正式版)
评论
0/150
提交评论