2021-2022学年四川省宜宾市南溪中考数学考试模拟冲刺卷含解析及点睛_第1页
2021-2022学年四川省宜宾市南溪中考数学考试模拟冲刺卷含解析及点睛_第2页
2021-2022学年四川省宜宾市南溪中考数学考试模拟冲刺卷含解析及点睛_第3页
2021-2022学年四川省宜宾市南溪中考数学考试模拟冲刺卷含解析及点睛_第4页
2021-2022学年四川省宜宾市南溪中考数学考试模拟冲刺卷含解析及点睛_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下列命题中,真命题是( )A对角线互相垂直且相等的四边形是正方形B等腰梯形既是轴对称图形又是中心对称图形C圆的切线垂直于经过切点的半径D垂直于同一直线的两条直线互相垂直2小亮家1月至

2、10月的用电量统计如图所示,这组数据的众数和中位数分别是()A30和 20 B30和25 C30和22.5 D30和17.53如图,将ABC沿着点B到C的方向平移到DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A42B96C84D484如图,直线ab,ABC的顶点B在直线a上,两边分别交b于A,C两点,若ABC=90,1=40,则2的度数为()A30B40C50D605如图,内接于,若,则ABCD6某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )成绩(分)3029282618人数(人)324211A该

3、班共有40名学生B该班学生这次考试成绩的平均数为29.4分C该班学生这次考试成绩的众数为30分D该班学生这次考试成绩的中位数为28分7如图是由四个相同的小正方体堆成的物体,它的正视图是()ABCD8估计的运算结果应在哪个两个连续自然数之间()A2和1B3和2C4和3D5和49如图,中,将绕点逆时针旋转得到,使得,延长交于点,则线段的长为( )A4B5C6D710如果向北走6km记作+6km,那么向南走8km记作()A+8km B8km C+14km D2km11如图,在ABC中,C=90,M是AB的中点,动点P从点A出发,沿AC方向匀速运动到终点C,动点Q从点C出发,沿CB方向匀速运动到终点B

4、已知P,Q两点同时出发,并同时到达终点.连结MP,MQ,PQ.在整个运动过程中,MPQ的面积大小变化情况是( )A一直增大B一直减小C先减小后增大D先增大后减小12方程x23x+20的解是()Ax11,x22Bx11,x22Cx11,x22Dx11,x22二、填空题:(本大题共6个小题,每小题4分,共24分)13圆锥体的底面周长为6,侧面积为12,则该圆锥体的高为 14如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为_m.15计算的结果是_.16如图,在平面直角坐标系中,四边形OABC是

5、边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_.17若圆锥的母线长为cm,其侧面积,则圆锥底面半径为 cm18如图,在等腰直角三角形ABC中,C=90,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_(结果保留)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在四边形ABCD中,BAC=ACD=90,B=D(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点P从B点出发,以1cm/s的速度沿B

6、CCDDA运动至A点停止,则从运动开始经过多少时间,BEP为等腰三角形.20(6分)如图,在RtABC中,CD,CE分别是斜边AB上的高,中线,BCa,ACb若a3,b4,求DE的长;直接写出:CD (用含a,b的代数式表示);若b3,tanDCE=,求a的值21(6分)如图,在RtABC中,C=90,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DEAB;若DB=4,BC=8,求AE的长.22(8分)如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作O交AB于点D,交AC于点G,直线DF是O的切线,D为切点,交CB的延长

7、线于点E(1)求证:DFAC;(2)求tanE的值23(8分)如图,正方形ABCD中,BD为对角线(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求DEF的周长24(10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?25(10分)解方程(1);(2)26(12分)某市

8、政府大力支持大学生创业李明在政府的扶持下投资销售一种进价为20元的护眼台灯销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y10 x+1设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?27(12分)有一个二次函数满足以下条件:函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);对称轴是x3;该函数有最小值是1(1)请根据以上信息求出二次函数表达式;(1)将该函数图象xx1的部分图象向下翻折与原图象

9、未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),结合画出的函数图象求x3+x4+x5的取值范围参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行故选C2、C【解析】将折线统计图中的数据从小到大重新排列后

10、,根据中位数和众数的定义求解可得【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20+252=22.5,故选:C【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错3、D【解析】由平移的性质知,BE=6,DE=AB=10,OE=DEDO=104=6,S四边形ODFC=S梯形ABEO=(AB+OE)BE=(10+6)6=1故

11、选D.【点睛】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.4、C【解析】依据平行线的性质,可得BAC的度数,再根据三角形内和定理,即可得到2的度数【详解】解:ab,1BAC40,又ABC90,2904050,故选C【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等5、B【解析】根据圆周角定理求出,根据三角形内角和定理计算即可【详解】解:由圆周角定理得,故选:B【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键6、D【解析】A.32+4+2+1

12、+1=40(人),故A正确;B. (3032+294+282+26+18)40=29.4(分),故B正确;C. 成绩是30分的人有32人,最多,故C 正确;D. 该班学生这次考试成绩的中位数为30分,故D错误;7、A【解析】【分析】根据正视图是从物体的正面看得到的图形即可得.【详解】从正面看可得从左往右2列正方形的个数依次为2,1,如图所示:故选A【点睛】本题考查了三视图的知识,正视图是从物体的正面看得到的视图8、C【解析】根据二次根式的性质,可化简得=3=2,然后根据二次根式的估算,由324可知2在4和3之间故选C点睛:此题主要考查了二次根式的化简和估算,关键是根据二次根式的性质化简计算,再

13、二次根式的估算方法求解.9、B【解析】先利用已知证明,从而得出,求出BD的长度,最后利用求解即可【详解】 故选:B【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的性质是解题的关键10、B【解析】正负数的应用,先判断向北、向南是不是具有相反意义的量,再用正负数表示出来【详解】解:向北和向南互为相反意义的量若向北走6km记作+6km,那么向南走8km记作8km故选:B【点睛】本题考查正负数在生活中的应用注意用正负数表示的量必须是具有相反意义的量11、C【解析】如图所示,连接CM,M是AB的中点,SACM=SBCM=SABC,开始时,SMPQ=SACM=SABC;由于P,Q两点同时出发,

14、并同时到达终点,从而点P到达AC的中点时,点Q也到达BC的中点,此时,SMPQ=SABC;结束时,SMPQ=SBCM=SABCMPQ的面积大小变化情况是:先减小后增大故选C12、A【解析】将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解【详解】解:原方程可化为:(x1)(x1)0,x11,x11故选:A【点睛】此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解二、

15、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】试题分析:用周长除以2即为圆锥的底面半径;根据圆锥的侧面积=侧面展开图的弧长母线长可得圆锥的母线长,利用勾股定理可得圆锥的高试题解析:圆锥的底面周长为6, 圆锥的底面半径为 62=3, 圆锥的侧面积=侧面展开图的弧长母线长,母线长=2126=4, 这个圆锥的高是考点:圆锥的计算14、3【解析】试题分析:如图,CDABMN,ABECDE,ABFMNF,即,解得:AB=3m,答:路灯的高为3m考点:中心投影15、【解析】二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并【详解】.【点睛】考点:二次根式的加减法1

16、6、 (2,2)【解析】如图,过点Q作QDOA于点D,QDO=90.四边形OABC是正方形,且边长为2,OQ=OC,QOA=45,OQ=OC=2,ODQ是等腰直角三角形,OD=OQ=22=2.点Q的坐标为(2,2).17、3【解析】圆锥的母线长是5cm,侧面积是15cm2,圆锥的侧面展开扇形的弧长为:l=6,锥的侧面展开扇形的弧长等于圆锥的底面周长,r=3cm,18、4【解析】由在等腰直角三角形ABC中,C=90,AB=4,可求得直角边AC与BC的长,继而求得ABC的面积,又由扇形的面积公式求得扇形EAD和扇形FBD的面积,继而求得答案【详解】解:在等腰直角三角形ABC中,C=90,AB=4,

17、AC=BC=ABsin45=AB=2,SABC=ACBC=4,点D为AB的中点,AD=BD=AB=2,S扇形EAD=S扇形FBD=22=,S阴影=SABCS扇形EADS扇形FBD=4故答案为:4【点睛】此题考查了等腰直角三角形的性质以及扇形的面积注意S阴影=SABCS扇形EADS扇形FBD三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)证明见解析;(2)从运动开始经过2s或s或s或s时,BEP为等腰三角形【解析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在

18、BC和DA上的情况求出t的值.【详解】解:(1)BAC=ACD=90,ABCD,B=D,B+BAC+ACB=D+ACD+DAC=180,DAC=ACB,ADBC,四边形ABCD是平行四边形(2)BAC=90,BC=5cm,AB=3cm,由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,AB=3cm,AE=AB,AE=1cm,BE=2cm,设经过ts时,BEP是等腰三角形,当P在BC上时,BP=EB=2cm,t=2时,BEP是等腰三角形;BP=PE,作PMAB于M,BM=ME=BE=1cmcosABC=,BP=cm,t=时,BEP是等腰三角形;BE=PE=2cm,作ENBC于N,则B

19、P=2BN,cosB=,BN=cm,BP=,t=时,BEP是等腰三角形;当P在CD上不能得出等腰三角形,AB、CD间的最短距离是4cm,CAAB,CA=4cm,当P在AD上时,只能BE=EP=2cm,过P作PQBA于Q,四边形ABCD是平行四边形,ADBC,QAD=ABC,BAC=Q=90,QAPABC,PQ:AQ:AP=4:3:5,设PQ=4xcm,AQ=3xcm,在EPQ中,由勾股定理得:(3x+1)2+(4x)2=22,x= ,AP=5x=cm,t=5+5+3=,答:从运动开始经过2s或s或s或s时,BEP为等腰三角形【点睛】本题主要考查平行四边形的判定定理及一元二次方程的解法,要求学生

20、能够熟练利用边角关系解三角形.20、(1);(2);(3).【解析】(1)求出BE,BD即可解决问题(2)利用勾股定理,面积法求高CD即可(3)根据CD3DE,构建方程即可解决问题【详解】解:(1)在RtABC中,ACB91,a3,b4,CD,CE是斜边AB上的高,中线,BDC91,在RtBCD中,(2)在RtABC中,ACB91,BCa,ACb,故答案为:(3)在RtBCD中,又,CD3DE,即b3,2a9a2,即a2+2a91由求根公式得(负值舍去),即所求a的值是【点睛】本题考查解直角三角形的应用,直角三角形斜边中线的性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型2

21、1、(1)详见解析;(2)6【解析】(1)连接CD,证明即可得到结论;(2)设圆O的半径为r,在RtBDO中,运用勾股定理即可求出结论.【详解】(1)证明:连接CD,.(2)设圆O的半径为,设.【点睛】本题综合考查了切线的性质和判定及勾股定理的综合运用综合性比较强,对于学生的能力要求比较高22、(1)证明见解析;(2)tanCBG=【解析】(1)连接OD,CD,根据圆周角定理得BDC=90,由等腰三角形三线合一的性质得D为AB的中点,所以OD是中位线,由三角形中位线性质得:ODAC,根据切线的性质可得结论;(2)如图,连接BG,先证明EFBG,则CBG=E,求CBG的正切即可【详解】解:(1)

22、证明:连接OD,CD,BC是O的直径,BDC=90,CDAB,AC=BC,AD=BD,OB=OC,OD是ABC的中位线ODAC,DF为O的切线,ODDF,DFAC;(2)解:如图,连接BG,BC是O的直径,BGC=90,EFC=90=BGC,EFBG,CBG=E,RtBDC中,BD=3,BC=5,CD=4,SABC=,即64=5BG,BG=,由勾股定理得:CG=,tanCBG=tanE=.【点睛】本题考查了切线的性质、等腰三角形的性质、平行线的判定和性质及勾股定理的应用;把所求角的正切进行转移是基本思路,利用面积法求BG的长是解决本题的难点23、(1)见解析;(2)2+1【解析】分析:(1)、

23、根据中垂线的做法作出图形,得出答案;(2)、根据中垂线和正方形的性质得出DF、DE和EF的长度,从而得出答案详解:(1)如图,EF为所作;(2)解:四边形ABCD是正方形,BDC=15,CD=BC=1,又EF垂直平分CD,DEF=90,EDF=EFD=15, DE=EF=CD=2,DF=DE=2,DEF的周长=DF+DE+EF=2+1点睛:本题主要考查的是中垂线的性质,属于基础题型理解中垂线的性质是解题的关键24、100或200【解析】试题分析:此题利用每一台冰箱的利润每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+

24、4)件,列方程得,(8+4)=4800,x2300 x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元考点:一元二次方程的应用25、(1),;(2),【解析】(1)利用公式法求解可得;(2)利用因式分解法求解可得【详解】(1)解:,;(2)解:原方程化为:,因式分解得:,整理得:,或,【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键26、 (1)35元;(2)30元【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)销售量,从而列出关系式,利用配方法得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论