2022年湖南省长沙市教育集团-十校联考最后数学试题含解析及点睛_第1页
2022年湖南省长沙市教育集团-十校联考最后数学试题含解析及点睛_第2页
2022年湖南省长沙市教育集团-十校联考最后数学试题含解析及点睛_第3页
2022年湖南省长沙市教育集团-十校联考最后数学试题含解析及点睛_第4页
2022年湖南省长沙市教育集团-十校联考最后数学试题含解析及点睛_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1如图,函数ykxb(k0)与y (m0)的图象交于点A(2,3),B(6,1),则不等式kxb的解集为()ABCD2已知点、都在反比例函数的图象上,则

2、下列关系式一定正确的是( )ABCD3如图,与1是内错角的是( )A2 B3C4 D54的算术平方根为( )ABCD5若顺次连接四边形各边中点所得的四边形是菱形,则四边形一定是( )A矩形B菱形C对角线互相垂直的四边形D对角线相等的四边形6在平面直角坐标系xOy中,将点N(1,2)绕点O旋转180,得到的对应点的坐标是( )A(1,2)B(1,2)C(1,2)D(1,2)7二次函数的最大值为( )A3B4C5D68如图,ABC中,C=90,D、E是AB、BC上两点,将ABC沿DE折叠,使点B落在AC边上点F处,并且DFBC,若CF=3,BC=9,则AB的长是( ) AB15CD99化简:-,结

3、果正确的是()A1BCD10若二次函数的图象与轴有两个交点,坐标分别是(x1,0),(x2,0),且. 图象上有一点在轴下方,则下列判断正确的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11如图,已知ABC中,ABAC5,BC8,将ABC沿射线BC方向平移m个单位得到DEF,顶点A,B,C分别与D,E,F对应,若以A,D,E为顶点的三角形是等腰三角形,且AE为腰,则m的值是_12计算的结果等于_13一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_.14因式分解:_.15因式分

4、解:a3a=_16不等式组的解集是 _.三、解答题(共8题,共72分)17(8分)如图,已知反比例函数y=(x0)的图象与一次函数y=x+4的图象交于A和B(6,n)两点求k和n的值;若点C(x,y)也在反比例函数y=(x0)的图象上,求当2x6时,函数值y的取值范围18(8分)某渔业养殖场,对每天打捞上来的鱼,一部分由工人运到集贸市场按10元/斤销售,剩下的全部按3元/斤的购销合同直接包销给外面的某公司:养殖场共有30名工人,每名工人只能参与打捞与到集贸市场销售中的一项工作,且每人每天可以打捞鱼100斤或销售鱼50斤,设安排x名员工负责打捞,剩下的负责到市场销售(1)若养殖场一天的总销售收入

5、为y元,求y与x的函数关系式;(2)若合同要求每天销售给外面某公司的鱼至少200斤,在遵守合同的前提下,问如何分配工人,才能使一天的销售收入最大?并求出最大值19(8分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹例如:动点P的坐标满足(m,m1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x1的图象即点P的轨迹就是直线y=x1(1)若m、n满足等式mnm=6,则(m,n1)在平面直角坐标系xOy中的轨迹是 ;(2)若点P(x,y)到点A(0,1)的距离与到直线y=1的距离相等,求点P的轨迹;(3)若抛物线y=上有两动点M、N满足MN=a(a

6、为常数,且a4),设线段MN的中点为Q,求点Q到x轴的最短距离20(8分)计算()2(3)0+|2|+2sin60;21(8分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元件)如下表所示:品种AB原来的运费4525现在的运费3020(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总

7、件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元22(10分)如图,矩形ABCD中,ABAD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:DAEECD23(12分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数 105 (1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该

8、市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?24为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】根据函数的图象和交点坐标即可求得结果【详解】解:不等式kx+b 的解集为:-6x0或x2,故选B【点睛】此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用2、A【解析】分析:根据反比例函数的性质,可得答案详解:由

9、题意,得k=-3,图象位于第二象限,或第四象限,在每一象限内,y随x的增大而增大,36,x1x20,故选A点睛:本题考查了反比例函数,利用反比例函数的性质是解题关键3、B【解析】由内错角定义选B.4、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可详解:=2,而2的算术平方根是,的算术平方根是,故选B点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误5、C【解析】【分析】如图,根据三角形的中位线定理得到EHFG,EH=FG,EF=BD,则可得四边形EFGH是平行四边形,若平行四边形EFGH是菱形,则可有EF=EH,由此即可得到答案【点睛

10、】如图,E,F,G,H分别是边AD,DC,CB,AB的中点,EH=AC,EHAC,FG=AC,FGAC,EF=BD,EHFG,EH=FG,四边形EFGH是平行四边形,假设AC=BD,EH=AC,EF=BD,则EF=EH,平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键6、A【解析】根据点N(1,2)绕点O旋转180,所得到的对应点与点N关于原点中心对称求解即可.【详解】将点N(1,2)绕点O旋转180,得到的对应点与点N关于原点中

11、心对称,点N(1,2),得到的对应点的坐标是(1,2).故选A.【点睛】本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.7、C【解析】试题分析:先利用配方法得到y=(x1)2+1,然后根据二次函数的最值问题求解解:y=(x1)2+1,a=10,当x=1时,y有最大值,最大值为1故选C考点:二次函数的最值8、C【解析】由折叠得到EB=EF,B=DFE,根据CE+EB=9,得到CE+EF=9,设EF=x,得到CE=9-x,在直角三角形CEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EF与CE的长,由FD与BC平行,得到一对内错角相等,等量

12、代换得到一对同位角相等,进而确定出EF与AB平行,由平行得比例,即可求出AB的长【详解】由折叠得到EB=EF,B=DFE,在RtECF中,设EF=EB=x,得到CE=BC-EB=9-x,根据勾股定理得:EF2=FC2+EC2,即x2=32+(9-x)2,解得:x=5,EF=EB=5,CE=4,FDBC,DFE=FEC,FEC=B,EFAB,则AB=,故选C【点睛】此题考查了翻折变换(折叠问题),涉及的知识有:勾股定理,平行线的判定与性质,平行线分线段成比例,熟练掌握折叠的性质是解本题的关键9、B【解析】先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.【详解】【点

13、睛】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.10、D【解析】根据抛物线与x轴有两个不同的交点,根的判别式0,再分a0和a0两种情况对C、D选项讨论即可得解【详解】A、二次函数y=ax2+bx+c(a0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、x1x2,=b2-4ac0,故本选项错误;C、若a0,则x1x0 x2,若a0,则x0 x1x2或x1x2x0,故本选项错误;D、若a0,则x0-x10,x0-x20,所以,(x0-x1)(x0-x2)0,a(x0-x1)(x0-x2)0,若a0,则(x0-x1)与(x0-x2)同号,a(x0-x1)(x0-x2)

14、0,综上所述,a(x0-x1)(x0-x2)0正确,故本选项正确二、填空题(本大题共6个小题,每小题3分,共18分)11、或5或1【解析】根据以点A,D,E为顶点的三角形是等腰三角形分类讨论即可【详解】解:如图(1)当在ADE中,DE=5,当AD=DE=5时为等腰三角形,此时m=5.(2)又AC=5,当平移m个单位使得E、C点重合,此时AE=ED=5,平移的长度m=BC=1,(3)可以AE、AD为腰使ADE为等腰三角形,设平移了m个单位:则AN=3,AC=,AD=m,得:,得m=,综上所述:m为或5或1,所以答案:或5或1【点睛】本题主要考查等腰三角形的性质,注意分类讨论的完整性.12、【解析

15、】分析:直接利用二次根式的性质进行化简即可详解:= 故答案为点睛:本题主要考查了分母有理化,正确掌握二次根式的性质是解题的关键13、 【解析】试题解析:画树状图得:由树状图可知:所有可能情况有12种,其中两次摸出的小球标号的和等于4的占2种,所以其概率=,故答案为14、n(m+2)(m2)【解析】先提取公因式 n,再利用平方差公式分解即可【详解】m2n4n=n(m24)=n(m+2)(m2).故答案为n(m+2)(m2)【点睛】本题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键15、a(a1)(a + 1)【解析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分

16、解解答:解:a3-a,=a(a2-1),=a(a+1)(a-1)16、x1【解析】解不等式得:x5,解不等式得:x-1所以不等式组的解集是x-1.故答案是:x-1.三、解答题(共8题,共72分)17、(1)n=1,k=1(2)当2x1时,1y2【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=10结合反比例函数的性质,即可求出:当2x1时,1y2【详解】(1)当x=1时,n=1+4=1,点B的坐标为(1,1)反比例函数y=过点B(1,1),k=11=1;(2)k=10,当x0时,y随x值增大而减小,

17、当2x1时,1y2【点睛】本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,用到了点在函数图象上,则点的坐标就适合所在函数图象的函数解析式,待定系数法等知识,熟练掌握相关知识是解题的关键.18、(1)y=50 x+10500;(2)安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【解析】(1)根据题意可以得到y关于x的函数解析式,本题得以解决;(2)根据题意可以得到x的不等式组,从而可以求得x的取值范围,从而可以得到y的最大值,本题得以解决【详解】(1)由题意可得,y=1050(30 x)+3100 x50(30 x)=50 x+10500,即y与x的函数关系式为

18、y=50 x+10500;(2)由题意可得,得x,x是整数,y=50 x+10500,当x=12时,y取得最大值,此时,y=5012+10500=9900,30 x=18,答:安排12人打捞,18人销售可使销售利润最大,最大销售利润为9900元【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用函数和不等式的性质解答19、(1);(2)y=x2;(3)点Q到x轴的最短距离为1【解析】(1)先判断出m(n1)=6,进而得出结论;(2)先求出点P到点A的距离和点P到直线y=1的距离建立方程即可得出结论;(3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出

19、,即可得出结论【详解】(1)设m=x,n1=y,mnm=6,m(n1)=6,xy=6, (m,n1)在平面直角坐标系xOy中的轨迹是故答案为:;(2)点P(x,y)到点A(0,1),点P(x,y)到点A(0,1)的距离的平方为x2+(y1)2,点P(x,y)到直线y=1的距离的平方为(y+1)2,点P(x,y)到点A(0,1)的距离与到直线y=1的距离相等,x2+(y1)2=(y+1)2, (3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),线段MN的中点为Q的纵坐标为 x24kx4b=0,x1+x2=4k,x1x2=4b, 点Q到x轴的最短距离为1【点睛】此题是二次函

20、数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键20、1【解析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果【详解】原式=4-1+2-+=1【点睛】此题考查了实数的运算,绝对值,零指数幂、负整数指数幂,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键21、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元【解析】(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x

21、和y的二元一次方程组,解之即可,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案【详解】解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据题意得:,解得:,答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,增加供货量后A产品的数量为(10+m)件,B产

22、品的数量为30+(8-m)=(38-m)件,根据题意得:W=30(10+m)+20(38-m)=10m+1060,由题意得:38-m2(10+m),解得:m6,即6m8,一次函数W随m的增大而增大当m=6时,W最小=1120,答:产品件数增加后,每次运费最少需要1120元【点睛】本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值22、见解析,【解析】要证DAE=ECD需先证ADFCEF,由折叠得BC=EC,B=AEC,由矩形得BC=AD,B=ADC=90,再根据等量代换和对顶角相等可以证出,得出结论【详解】证明:由折叠得:BC=EC,B=AEC,矩形ABCD,BC=AD,B=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论