2021-2022学年重庆考数学考前最后一卷含解析及点睛_第1页
2021-2022学年重庆考数学考前最后一卷含解析及点睛_第2页
2021-2022学年重庆考数学考前最后一卷含解析及点睛_第3页
2021-2022学年重庆考数学考前最后一卷含解析及点睛_第4页
2021-2022学年重庆考数学考前最后一卷含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地已知A,C两地间的距离为110千米,B,C两地间的距离为100千米甲骑自行车的平均速度比乙快2千米/时结果两人同时到达C地求两人的平均速度,为解决此问题,设乙骑自行车的

2、平均速度为x千米/时由题意列出方程其中正确的是()ABCD2二次函数yax2+c的图象如图所示,正比例函数yax与反比例函数y在同一坐标系中的图象可能是()ABCD3方程2x2x3=0的两个根为()Ax1=,x2=1Bx1=,x2=1Cx1=,x2=3Dx1=,x2=34下列方程有实数根的是( )ABCx+2x1=0D5如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )ABCD6如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么AOB的度数是()A90B60C45D307已知圆锥的侧面积为10cm

3、2,侧面展开图的圆心角为36,则该圆锥的母线长为()A100cmBcmC10cmDcm8规定:如果关于x的一元二次方程ax2+bx+c=0(a0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论: 方程x2+2x8=0是倍根方程;若关于x的方程x2+ax+2=0是倍根方程,则a=3;若关于x的方程ax26ax+c=0(a0)是倍根方程,则抛物线y=ax26ax+c与x轴的公共点的坐标是(2,0)和(4,0);若点(m,n)在反比例函数y=的图象上,则关于x的方程mx2+5x+n=0是倍根方程上述结论中正确的有( )ABCD9若正比例函数ymx(m是常数,m0

4、)的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A2B2C4D410如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=20,那么EFC的度数为()A115B120C125D130二、填空题(共7小题,每小题3分,满分21分)11已知二次函数yax2+bx+c(a0)的图象与x轴交于(x1,0),且1x10,对称轴x1如图所示,有下列5个结论:abc0;ba+c;4a+2b+c0;2c3b;a+bm(am+b)(m1的实数)其中所有结论正确的是_(填写番号)12一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_cm13对于函数,

5、我们定义(m、n为常数)例如,则已知:若方程有两个相等实数根,则m的值为_14如图,在ABC中,ABAC,A36, BD平分ABC交AC于点D,DE平分BDC交BC于点E,则 15若a、b为实数,且b+4,则a+b_16如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:BE=2AE;DFPBPH;PFDPDB;DP2=PHPC其中正确的是_(填序号)17为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中

6、位数是_小时三、解答题(共7小题,满分69分)18(10分)如图,在矩形纸片ABCD中,AB=6,BC=1把BCD沿对角线BD折叠,使点C落在C处,BC交AD于点G;E、F分别是CD和BD上的点,线段EF交AD于点H,把FDE沿EF折叠,使点D落在D处,点D恰好与点A重合(1)求证:ABGCDG;(2)求tanABG的值;(3)求EF的长19(5分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整理分析数据如下表:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)求,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队

7、员?20(8分)如图,男生楼在女生楼的左侧,两楼高度均为90m,楼间距为AB,冬至日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为,女生楼在男生楼墙面上的影高为DA,已知求楼间距AB;若男生楼共30层,层高均为3m,请通过计算说明多少层以下会受到挡光的影响?参考数据:,21(10分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额

8、x(万元)之间存在二次函数关系:yBax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?22(10分)如图,RtABC,CABC,AC4,在AB边上取一点D,使ADBC,作AD的垂直平分线,交AC边于点F,交以AB为直径的O于G,H,设BCx(1)求证:四边形AGDH为菱形;(2)若EFy,求y关于x

9、的函数关系式;(3)连结OF,CG若AOF为等腰三角形,求O的面积;若BC3,则CG+9_(直接写出答案)23(12分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a

10、%,求a的值至少是多少?24(14分)如图,已知ABC内接于,AB是直径,ODAC,AD=OC(1)求证:四边形OCAD是平行四边形;(2)填空:当B= 时,四边形OCAD是菱形;当B= 时,AD与相切.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可解:设乙骑自行车的平均速度为x千米/时,由题意得:=,故选A2、C【解析】根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函

11、数图像位置.【详解】解:由二次函数的图像可知a0,c0,正比例函数过二四象限,反比例函数过一三象限.故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.3、A【解析】利用因式分解法解方程即可【详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1故选A【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化

12、思想)4、C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:Ax40,x4+2=0无解;故本选项不符合题意; B0,=1无解,故本选项不符合题意; Cx2+2x1=0,=8=4=120,方程有实数根,故本选项符合题意; D解分式方程=,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意 故选C点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、D【解析】左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确故选D【详解】请在此输入详解!6、B【解析】首先连接AB,由题意易证得AOB是等边三角形,根据等

13、边三角形的性质,可求得AOB的度数【详解】连接AB,根据题意得:OB=OA=AB,AOB是等边三角形,AOB=60.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.7、C【解析】圆锥的侧面展开图是扇形,利用扇形的面积公式可求得圆锥的母线长【详解】设母线长为R,则圆锥的侧面积=10,R=10cm,故选C【点睛】本题考查了圆锥的计算,熟练掌握扇形面积是解题的关键.8、C【解析】分析:通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;设=2,得到=2=2,得到当=1时,=2,当=1时,=2,于是得到结论;根据“倍根方程”的定义即可得到结论

14、;若点(m,n)在反比例函数y=的图象上,得到mn=4,然后解方程m+5x+n=0即可得到正确的结论;详解:由-2x-8=0,得:(x-4)(x+2)=0, 解得=4,=2, 2,或2,方程-2x-8=0不是倍根方程;故错误;关于x的方程+ax+2=0是倍根方程, 设=2, =2=2, =1,当=1时,=2, 当=1时,=2, +=a=3, a=3,故正确;关于x的方程a-6ax+c=0(a0)是倍根方程, =2,抛物线y=a-6ax+c的对称轴是直线x=3, 抛物线y=a-6ax+c与x轴的交点的坐标是(2,0)和(4,0), 故正确;点(m,n)在反比例函数y=的图象上, mn=4, 解m

15、+5x+n=0得=,=, =4, 关于x的方程m+5x+n=0不是倍根方程;故选C点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键9、B【解析】利用待定系数法求出m,再结合函数的性质即可解决问题【详解】解:ymx(m是常数,m0)的图象经过点A(m,4),m24,m2,y的值随x值的增大而减小,m0,m2,故选:B【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型10、C【解析】分析:由已知条件易得AEB=70,由此可得DEB=110,结合折叠的性质可得DEF=55,则由ADBC可得EFC=

16、125,再由折叠的性质即可得到EFC=125.详解:在ABE中,A=90,ABE=20,AEB=70,DEB=180-70=110,点D沿EF折叠后与点B重合,DEF=BEF=DEB=55,在矩形ABCD中,ADBC,DEF+EFC=180,EFC=180-55=125,由折叠的性质可得EFC=EFC=125.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据函数图象和二次函数的性质可以判断题目中各个小题的结论是否成立,从而可以解答本题【详解】解:由图象可得,抛物线开口向

17、下,则a0,对称轴在y轴右侧,则与a的符号相反,故b0.a0,b0,c0,abc0,故错误,当x=-1时,y=a-b+c0,得ba+c,故错误,二次函数y=ax2+bx+c(a0)的图象与x轴交于(x1,0),且-1x10,对称轴x=1,x=2时的函数值与x=0的函数值相等,x=2时,y=4a+2b+c0,故正确,x=-1时,y=a-b+c0,-=1,2a-2b+2c0,b=-2a,-b-2b+2c0,2c3b,故正确,由图象可知,x=1时,y取得最大值,此时y=a+b+c,a+b+cam2+bm+c(m1),a+bam2+bma+bm(am+b),故正确,故答案为:【点睛】本题考查二次函数图

18、象与系数的关系、抛物线与x轴的交点坐标,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答12、1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去当底边是4cm,腰长是9cm时,能构成三角形,则其周长=4+9+9=1cm故填1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.13、 【解析】分析:根据题目中所给定义先求,再利用根与系数关系求m值.详解:由所给定义知,,若=

19、0,解得m=.点睛:一元二次方程的根的判别式是,=b2-4ac,a,b,c分别是一元二次方程中二次项系数、一次项系数和常数项.0说明方程有两个不同实数解,=0说明方程有两个相等实数解,0说明方程无实数解.实际应用中,有两种题型(1)证明方程实数根问题,需要对的正负进行判断,可能是具体的数直接可以判断,也可能是含字母的式子,一般需要配方等技巧.14、3-52【解析】试题分析:因为ABC中,ABAC,A36所以ABC=ACB=72因为BD平分ABC交AC于点D所以ABD=CBD=36=A因为DE平分BDC交BC于点E所以CDE=BDE=36=A所以AD=BD=BC根据黄金三角形的性质知,BCAC=

20、5-12,ECDC=5-12,DCAD=5-12EC=5-12DC,AD=2DC5-1所以ECAD=5-12DC2DC5-1=5-12DC5+12DC=5-15+1=3-52考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36,每个底角为72.它的腰与它的底成黄金比当底角被平分时,角平分线分对边也成黄金比,15、5或1【解析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a的值,b的值,根据有理数的加法,可得答案【详解】由被开方数是非负数,得,解得a1,或a1,b4,当a1时,a+b1+45,当a1时,a+b1+41,故答案为5或1【点睛】本题考查了函

21、数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负16、【解析】由正方形的性质和相似三角形的判定与性质,即可得出结论【详解】BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,BE=2AE;故正确;PC=CD,PCD=30,PDC=75,FDP=15,DBA=45,PBD=15,FDP=PBD,DFP=BPC=60,DFPBPH;故正确;FDP=PBD=15,ADB=45,PDB=30,而DFP=6

22、0,PFDPDB,PFD与PDB不会相似;故错误;PDH=PCD=30,DPH=DPC,DPHCPD,DP2=PHPC,故正确;故答案是:【点睛】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理17、1【解析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时故答案为1.三、解答题(共7小题,满分69分)18、(1)证明见解析(2)7/24(3)25/6【解析】(1)证明:BDC由BDC翻折而成, C=BAG=90,CD=AB=CD,AGB=DGC,AB

23、G=ADE。在ABGCDG中,BAG=C,AB= CD,ABG=AD C,ABGCDG(ASA)。(2)解:由(1)可知ABGCDG,GD=GB,AG+GB=AD。设AG=x,则GB=1x,在RtABG中,AB2+AG2=BG2,即62+x2=(1x)2,解得x=。(3)解:AEF是DEF翻折而成,EF垂直平分AD。HD=AD=4。tanABG=tanADE=。EH=HD=4。EF垂直平分AD,ABAD,HF是ABD的中位线。HF=AB=6=3。EF=EH+HF=。(1)根据翻折变换的性质可知C=BAG=90,CD=AB=CD,AGB=DGC,故可得出结论。(2)由(1)可知GD=GB,故AG

24、+GB=AD,设AG=x,则GB=1-x,在RtABG中利用勾股定理即可求出AG的长,从而得出tanABG的值。(3)由AEF是DEF翻折而成可知EF垂直平分AD,故HD=AD=4,再根据tanABG的值即可得出EH的长,同理可得HF是ABD的中位线,故可得出HF的长,由EF=EH+HF即可得出结果。19、(1)a=7,b=7.5,c=4.2;(2)见解析.【解析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析【详解】(1)甲的平均成绩a=

25、7(环),乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10,乙射击成绩的中位数b=7.5(环),其方差c=(3-7)2+(4-7)2+(6-7)2+2(7-7)2+3(8-7)2+(9-7)2+(10-7)2=(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大【点睛】本题考查的是条形统计图和方差、平均数、中位数、众数的综合运用熟练掌握

26、平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析20、(1)的长为50m;(2)冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响【解析】如图,作于M,于则,设想办法构建方程即可解决问题求出AC,AD,分两种情形解决问题即可【详解】解:如图,作于M,于则,设在中,在中,的长为50m由可知:,冬至日20层包括20层以下会受到挡光的影响,春分日6层包括6层以下会受到挡光的影响【点睛】考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型21、 (1)yB=0.2x2+1.6x(2)一次函数,yA=0.4x(3)该

27、企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式yB=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【详解】解:(1)yB=0.2x2+1.6x, (2)一次函数,yA=0.4x, (3)设投资B产品x万元,投资A产品(15x)万元,投资两种产品共获利W万元, 则W=(0.2x2+1.6x)+0.4(15x)=0.2x2+1.2x+6=0.2(x3)2+7.8,

28、 当x=3时,W最大值=7.8, 答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.22、(1)证明见解析;(2)yx2(x0);(3)或8或(2+2);4【解析】(1)根据线段的垂直平分线的性质以及垂径定理证明AG=DG=DH=AH即可;(2)只要证明AEFACB,可得解决问题;(3)分三种情形分别求解即可解决问题;只要证明CFGHFA,可得=,求出相应的线段即可解决问题;【详解】(1)证明:GH垂直平分线段AD,HAHD,GAGD,AB是直径,ABGH,EGEH,DGDH,AGDGDHAH,四边形AGDH是菱形(2)解:AB是直径,ACB90,AEEF,AEFACB90,EAFCAB,AEFACB,yx2(x0)(3)解:如图1中,连接DFGH垂直平分线段AD,FAFD,当点D与O重合时,AOF是等腰三角形,此时AB2BC,CAB30,AB,O的面积为如图2中,当AFAO时,AB,OA,AF,解得x4(负根已经舍弃),AB,O的面积为8如图21中,当点C与点F重合时,设AEx,则BCAD2x,AB,ACEABC,AC2AEAB,16x,解得x222(负根已经舍弃),AB216+4x28+8,O的面积AB2(2+2)综上所述,满足条件的O的面积为或8或(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论