版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上已知纸
2、板的两条边DF50cm,EF30cm,测得边DF离地面的高度AC1.5m,CD20m,则树高AB为()A12mB13.5mC15mD16.5m2我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD3某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率设该果园水果产量的年平均增长率为x,则根据题意可列方程为( )A144(1x)2=100B100(1x)2=144C144(1
3、+x)2=100D100(1+x)2=1444如图,在等边三角形ABC中,点P是BC边上一动点(不与点B、C重合),连接AP,作射线PD,使APD=60,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()ABCD5下列计算中,正确的是()Aa3a=4a2B2a+3a=5a2C(ab)3=a3b3D7a314a2=2a6下列各数中负数是()A(2) B|2| C(2)2 D(2)37方程的解是( )ABCD8在RtABC中,C=90,如果sinA=,那么sinB的值是()ABCD9如图,双曲线y=(k0)经过矩形OABC的边BC的中点E,交AB于点D,若四边形
4、ODBC的面积为3,则k的值为( )A1B2C3D610在实数,有理数有( )A1个B2个C3个D4个二、填空题(共7小题,每小题3分,满分21分)11如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是 12将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是_13若圆锥的底面半径长为10,侧面展开图是一个半圆,则该圆锥的母线长为_14如图,在RtABC中,B=90,A=45,BC=4,以BC为直径的O与AC相交于点O,则阴影部分的面积为_15如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长
5、分别为1.2m和9m.则旗杆的高度为_m. 16因式分解=_17如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AG、CF下列结论:ABGAFG;BG=GC;AGCF;SFGC=1其中正确结论的是_三、解答题(共7小题,满分69分)18(10分)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为63.4,沿山坡向上走到P处再测得该建筑物顶点A的仰角为53已知BC90米,且B、C、D在同一条直线上,山坡坡度i5:1(1)求此人所在位置点P的铅直高度(结果精确到0.1米)(2)求此人从所在位置点P走到建筑物底部B点的路程(结
6、果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53,tan63.42)19(5分)为了奖励优秀班集体,学校购买了若干副乒乓球拍和羽毛球拍,购买2副乒乓球拍和1副羽毛球拍共需116元,购买3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的单价各是多少元?若学校购买5副乒乓球拍和3副羽毛球拍,一共应支出多少元?20(8分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBEGD;运用(1)(2)解答中所积累的经验和知识,完
7、成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,BE4,DE=10, 求直角梯形ABCD的面积21(10分)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x 的函数关系图象(1)求y与x的函数关系式;(2)直接写出自变量x的取值范围22(10分)如图,已知ABC,按如下步骤作图:分别以A、C为圆心,以大于12AC的长为半径在AC两边作弧,交于两点M、N;连接
8、MN,分别交AB、AC于点D、O;过C作CEAB交MN于点E,连接AE、CD(1)求证:四边形ADCE是菱形;(2)当ACB=90,BC=6,ADC的周长为18时,求四边形ADCE的面积23(12分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出时,的取值范围;(3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由24(14分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价元只
9、售价元只甲种节能灯3040乙种节能灯3550求甲、乙两种节能灯各进多少只?全部售完100只节能灯后,该商场获利多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB【详解】DEF=BCD=90,D=D,DEFDCB,DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,由勾股定理求得DE=40cm,BC=15米,AB=AC+BC=1.5+15=16.5(米)故答案为16.5m【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相
10、似三角形的模型2、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.3、D【解析】试题分析:2013年的产量=2011年的产量(1+年平均增长率)2,把相关数值代入即可解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x
11、)2=144,故选D点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键4、C【解析】根据等边三角形的性质可得出B=C=60,由等角的补角相等可得出BAP=CPD,进而即可证出ABPPCD,根据相似三角形的性质即可得出y=- x2+x,对照四个选项即可得出【详解】ABC为等边三角形,B=C=60,BC=AB=a,PC=a-xAPD=60,B=60,BAP+APB=120,APB+CPD=120,BAP=CPD,ABPPCD,,即,y=- x2+x.故选C.【点睛】考查了动点问题的函数图象、相似三角形的判定与性质,利用相似三角形的性质找出y=-x2+x是解题的关键5、C【解析】
12、根据同底数幂的运算法则进行判断即可.【详解】解:A、a3a=3a2,故原选项计算错误;B、2a+3a=5a,故原选项计算错误;C、(ab)3=a3b3,故原选项计算正确;D、7a314a2=a,故原选项计算错误;故选C【点睛】本题考点:同底数幂的混合运算.6、B【解析】首先利用相反数,绝对值的意义,乘方计算方法计算化简,进一步利用负数的意义判定即可【详解】A、-(-2)=2,是正数;B、-|-2|=-2,是负数;C、(-2)2=4,是正数;D、-(-2)3=8,是正数故选B【点睛】此题考查负数的意义,利用相反数,绝对值的意义,乘方计算方法计算化简是解决问题的关键7、D【解析】按照解分式方程的步
13、骤进行计算,注意结果要检验.【详解】解:经检验x=4是原方程的解故选:D【点睛】本题考查解分式方程,注意结果要检验.8、A【解析】RtABC中,C=90,sinA=,cosA=,A+B=90,sinB=cosA=故选A9、B【解析】先根据矩形的特点设出B、C的坐标,根据矩形的面积求出B点横纵坐标的积,由D为AB的中点求出D点的横纵坐标,再由待定系数法即可求出反比例函数的解析式.【详解】解:如图:连接OE,设此反比例函数的解析式为y=(k0),C(c,0),则B(c,b),E(c, ),设D(x,y),D和E都在反比例函数图象上,xy=k, 即 ,四边形ODBC的面积为3, bc=4 k0 解得
14、k=2,故答案为:B.【点睛】本题考查了反比例函数中比例系数k的几何意义,涉及到矩形的性质及用待定系数法求反比例函数的解析式,难度适中.10、D【解析】试题分析:根据有理数是有限小数或无限循环小数,可得答案:是有理数,故选D考点:有理数二、填空题(共7小题,每小题3分,满分21分)11、4n1【解析】由图可知:第一个图案有阴影小三角形1个,第二图案有阴影小三角形1+4=6个,第三个图案有阴影小三角形1+8=11个,那么第n个就有阴影小三角形1+4(n1)=4n1个12、1【解析】根据平移规律“左加右减,上加下减”填空.【详解】解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y
15、=(x+m-1)1其对称轴为:x=1-m=0,解得m=1故答案是:1.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13、2【解析】侧面展开后得到一个半圆,半圆的弧长就是底面圆的周长依此列出方程即可【详解】设母线长为x,根据题意得2x2=25,解得x=1故答案为2【点睛】本题考查了圆锥的计算,解题的关键是明白侧面展开后得到一个半圆就是底面圆的周长,难度不大14、6【解析】连接、,根据阴影部分的面积计算.【详解】连接、,为的直径,阴影部分的面积.故答案为.【点睛】本题考查的是扇形面积计算,掌握直角三角形的性质、扇形面积公式是解题的关
16、键.15、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可解:同一时刻物高与影长成正比例设旗杆的高是xm1.6:1.2=x:9x=1即旗杆的高是1米故答案为1考点:相似三角形的应用16、【解析】解:=,故答案为:17、【解析】根据翻折变换的性质和正方形的性质可证RtABGRtAFG;在直角ECG中,根据勾股定理可证BG=GC;通过证明AGB=AGF=GFC=GCF,由平行线的判定可得AGCF;由于SFGC=SGCE-SFEC,求得面积比较即可【详解】正确理由:AB=AD=AF,AG=AG,B=AFG=90,RtABGRtAFG(HL);正确理由:EF=DE=C
17、D=2,设BG=FG=x,则CG=6-x在直角ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=1BG=1=6-1=GC;正确理由:CG=BG,BG=GF,CG=GF,FGC是等腰三角形,GFC=GCF又RtABGRtAFG;AGB=AGF,AGB+AGF=2AGB=180-FGC=GFC+GCF=2GFC=2GCF,AGB=AGF=GFC=GCF,AGCF;错误理由:SGCE=GCCE=14=6GF=1,EF=2,GFC和FCE等高,SGFC:SFCE=1:2,SGFC=6=1故不正确正确的个数有1个: .故答案为【点睛】本题综合性较强,考查了翻折变换的性质和正方形的性质,
18、全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度三、解答题(共7小题,满分69分)18、(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米【解析】分析:(1)过P作PFBD于F,作PEAB于E,设PF5x,在RtABC中求出AB,用含x的式子表示出AE,EP,由tanAPE,求得x即可;(2)在RtCPF中,求出CP的长.详解:过P作PFBD于F,作PEAB于E,斜坡的坡度i5:1,设PF5x,CF1x,四边形BFPE为矩形,BFPEPFBE.在RTABC中,BC90,tanACB,ABtan63.4BC290180,AEABBEABP
19、F1805x,EPBCCF9010 x.在RTAEP中,tanAPE,x,PF5x.答:此人所在P的铅直高度约为14.3米.由(1)得CP13x,CP1337.1,BCCP9037.117.1.答:从P到点B的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长.19、(1)一副乒乓球拍 28 元,一副羽毛球拍 60元(2)共 320 元【解析】整体分析:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,根据“购买2副乒乓球拍和1副羽毛球拍共需11
20、6元,购买3幅乒乓球拍和2幅羽毛球拍共需204元”列方程组求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的单价求解.解:(1)设购买一副乒乓球拍x元,一副羽毛球拍y元,由题意得,解得:答:购买一副乒乓球拍28元,一副羽毛球拍60元.(2)528360320元答:购买5副乒乓球拍和3副羽毛球拍共320元20、(1)、(2)证明见解析(3)28【解析】试题分析:(1)根据正方形的性质,可直接证明CBECDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知BCE=DCF,即可证明ECF=BCD=90,根据GCE=45,得GCF=GCE=45,利用全等三角形的判定方法得出
21、ECGFCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角ADE中利用勾股定理即可求解;试题解析:(1)如图1,在正方形ABCD中,BC=CD,B=CDF,BE=DF,CBECDF,CE=CF;(2)如图2,延长AD至F,使DF=BE,连接CF,由(1)知CBECDF,BCE=DCFBCE+ECD=DCF+ECD即ECF=BCD=90,又GCE=45,GCF=GCE=45,CE=CF,GCE=GCF,GC=GC,ECGFCG,GE=GF,GE=D
22、F+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形AE=AB-BE=12-4=8,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角ADE中,AE2+AD2=DE2,则82+(12-x)2=(4+x)2,解得:x=1则DE=4+1=2【点睛】本题考查了全等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线21、(1)y=-2x+31,(2)20 x1【解析】试题分析:(1)根据函数图象经过点(20,300)和点(30,280),利用待定系数法即可求出y与x的函数关系式;(2)根据试销期间销售单价不
23、低于成本单价,也不高于每千克1元,结合草莓的成本价即可得出x的取值范围试题解析:(1)设y与x的函数关系式为y=kx+b,根据题意,得: 解得: y与x的函数解析式为y=-2x+31,(2) 试销期间销售单价不低于成本单价,也不高于每千克1元,且草莓的成本为每千克20元,自变量x的取值范围是20 x122、(1)详见解析;(2)1【解析】(1)利用直线DE是线段AC的垂直平分线,得出ACDE,即AOD=COE=90,从而得出AODCOE,即可得出四边形ADCE是菱形.(2)利用当ACB=90时,ODBC,即有ADOABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出
24、四边形ADCE的面积.【详解】(1)证明:由题意可知:分别以A、C为圆心,以大于12AC的长为半径在AC两边作弧,交于两点M、N;直线DE是线段AC的垂直平分线,ACDE,即AOD=COE=90;且AD=CD、AO=CO,又CEAB,1=2,在AOD和COE中1=2AOD=COE=90AO=CO, AODCOE(AAS),OD=OE,A0=CO,DO=EO,四边形ADCE是平行四边形,又ACDE,四边形ADCE是菱形;(2)解:当ACB=90时,ODBC,即有ADOABC,ODBC=AOAC=12, 又BC=6,OD=3,又ADC的周长为18,AD+AO=9, 即AD=9AO,OD=AD2-AO2=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度批量商品采购合同模板
- 2024年爆破作业服务协议条款样本版
- 2024年充电桩产业链协同发展合同3篇
- 2024年度瑜伽馆与瑜伽教练分成协议3篇
- 餐饮门面合作合同模板
- 2024年度草原放牧权租赁协议3篇
- 2024年个人向公司借资合同2篇
- 诸葛烤鱼加盟合同范例
- 采购乌龟设备合同模板
- 签订水果合同范例
- 三年级上册音乐课件-秧歌舞 |人教版 (共22张PPT)
- 《一年级语文上册口语交际专项复习》精编课件
- 湘教版劳动教育初中第八课生炒柠檬鸭教案
- 《习作推荐一本书》教学课件完美版
- 水泥电线杆立杆技术方案
- 中职传感器教学设计
- 设备验证(IQ、OQ、PQ)文件模板
- 学生英语短剧剧本《丑小鸭》
- 建筑工程团体意外伤害保险投保单
- 小学体育障碍跑教案
- 高频电路原理与分析课后习题答案.doc
评论
0/150
提交评论