2022年山东省临沂市兰山区中考三模数学试题含解析及点睛_第1页
2022年山东省临沂市兰山区中考三模数学试题含解析及点睛_第2页
2022年山东省临沂市兰山区中考三模数学试题含解析及点睛_第3页
2022年山东省临沂市兰山区中考三模数学试题含解析及点睛_第4页
2022年山东省临沂市兰山区中考三模数学试题含解析及点睛_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1是两个连续整数,若,则分别是( ).A2,3B3,2C3,4D6,82我国作家莫言获得诺贝尔文学奖之后,他的代表作品蛙的销售量就比获奖之前增长了180倍,达到210000

2、0册把2100000用科学记数法表示为()A0.21108B21106C2.1107D2.11063广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65103B3.65104C3.65105D3.651064一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球(不放回),再从余下的2个球中任意摸出1个球则两次摸到的球的颜色不同的概率为()ABCD5下列计算正确的是()A3a2a1Ba2+a5a7C(ab)3ab3Da2a4a66如图,若ABC内接于半径为R的O,且A60,连接OB、OC,则边BC的长为()AB

3、CD7若分式方程无解,则a的值为()A0B-1C0或-1D1或-18下列运算正确的是( )Aa3a2=a6B(2a)3=6a3C(ab)2=a2b2D3a2a2=2a29的算术平方根为( )ABCD10在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180,所得抛物线的解析式是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_cm112如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)13下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的

4、平均数与方差s2:甲乙丙丁平均数(cm)561560561560方差s2(cm2)3.53.515.516.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择_14如图,在 RtABC 中,C=90,AM 是 BC 边上的中线,cosAMC ,则 tanB 的值为_15如图,A、B是双曲线y=上的两点,过A点作ACx轴,交OB于D点,垂足为C若D为OB的中点,ADO的面积为3,则k的值为_16若关于x的方程=0有增根,则m的值是_三、解答题(共8题,共72分)17(8分)如图,ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出ABC向左平移5个单

5、位长度后得到的ABC; 请画出ABC关于原点对称的ABC; 在轴上求作一点P,使PAB的周长最小,请画出PAB,并直接写出P的坐标.18(8分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角(0180且90),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y)(1)如图2,45,矩形OABC中的一边OA

6、在x轴上,BC与y轴交于点D,OA2,OCl点A、B、C在此斜坐标系内的坐标分别为A ,B ,C 设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 (2)若120,O为坐标原点如图3,圆M与y轴相切原点O,被x轴截得的弦长OA4 ,求圆M的半径及圆心M的斜坐标如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 19(8分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270后得到扇形COD,AP,BQ分别切优弧C

7、D于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 时,求的长(结果保留 );若APO的外心在扇形COD的内部,求OC的取值范围.20(8分)如图,一次函数(为常数,且)的图像与反比例函数的图像交于,两点.求一次函数的表达式;若将直线向下平移个单位长度后与反比例函数的图像有且只有一个公共点,求的值.21(8分)中华文明,源远流长;中华汉字,寓意深广为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整请你根据统计图解答下列问题:参加比赛的学生共

8、有_名;在扇形统计图中,m的值为_,表示“D等级”的扇形的圆心角为_度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率22(10分)如图,在ABC中,点D,E分别在边AB,AC上,且BE平分ABC,ABE=ACD,BE,CD交于点F(1)求证:;(2)请探究线段DE,CE的数量关系,并说明理由;(3)若CDAB,AD=2,BD=3,求线段EF的长23(12分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分)

9、,按成绩分成,五个等级将所得数据绘制成如下统计图根据图中信息,解答下列问题:该校被抽取的男生跳绳成绩频数分布直方图(1)本次调查中,男生的跳绳成绩的中位数在_等级;(2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数24如图,在矩形ABCD中,AB3,AD4,P沿射线BD运动,连接AP,将线段AP绕点P顺时针旋转90得线段PQ(1)当点Q落到AD上时,PAB_,PA_,长为_;(2)当APBD时,记此时点P为P0,点Q为Q0,移动点P的位置,求QQ0D的大小;(3)在点P运动中,当以点Q为圆心,BP为半径的圆与直线BD相切时,求BP的长度;(4)点P在线段BD上,由B向D

10、运动过程(包含B、D两点)中,求CQ的取值范围,直接写出结果参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】根据,可得答案【详解】根据题意,可知,可得a=2,b=1故选A【点睛】本题考查了估算无理数的大小,明确是解题关键2、D【解析】2100000=2.1106.点睛:对于一个绝对值较大的数,用科学记数法写成 的形式,其中,n是比原整数位数少1的数.3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】

11、解:将365000这个数用科学记数法表示为3.651故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、B【解析】本题主要需要分类讨论第一次摸到的球是白球还是红球,然后再进行计算.【详解】若第一次摸到的是白球,则有第一次摸到白球的概率为,第二次,摸到白球的概率为,则有;若第一次摸到的球是红色的,则有第一次摸到红球的概率为,第二次摸到白球的概率为1,则有,则两次摸到的球的颜色不同的概率为.【点睛】掌握分类讨论的方法是本题解题的关键.5、D【解析】根据合并同类项法则、积的乘方及同底数幂的乘法的运算法则依

12、次计算后即可解答.【详解】3a2aa,选项A不正确;a2+a5a7,选项B不正确;(ab)3a3b3,选项C不正确;a2a4a6,选项D正确故选D【点睛】本题考查了合并同类项法则、积的乘方及同底数幂的乘法的运算法则,熟练运用法则是解决问题的关键.6、D【解析】延长BO交圆于D,连接CD,则BCD=90,D=A=60;又BD=2R,根据锐角三角函数的定义得BC=R.【详解】解:延长BO交O于D,连接CD,则BCD=90,D=A=60,CBD=30,BD=2R,DC=R,BC=R,故选D.【点睛】此题综合运用了圆周角定理、直角三角形30角的性质、勾股定理,注意:作直径构造直角三角形是解决本题的关键

13、.7、D【解析】试题分析:在方程两边同乘(x1)得:xaa(x1),整理得:x(1a)2a,当1a0时,即a1,整式方程无解,当x10,即x1时,分式方程无解,把x1代入x(1a)2a得:(1a)2a,解得:a1,故选D点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件8、D【解析】试题分析:根据同底数幂相乘,底数不变指数相加求解求解;根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘求解;根据完全平方公式求解;根据合并同类项法则求解解:A、a3a2=a3+2=a5,故A错误;B、(2a)3=8a3,故B错误;C、(ab)2=a22ab+b2,故C错误;D、3a2a

14、2=2a2,故D正确故选D点评:本题考查了完全平方公式,合并同类项法则,同底数幂的乘法,积的乘方的性质,熟记性质与公式并理清指数的变化是解题的关键9、B【解析】分析:先求得的值,再继续求所求数的算术平方根即可详解:=2,而2的算术平方根是,的算术平方根是,故选B点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A的错误10、B【解析】把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可【详解】解:y=x2+2x+3=(x+1)2+2,原抛物线的顶点坐标为(-1,2),令

15、x=0,则y=3,抛物线与y轴的交点坐标为(0,3),抛物线绕与y轴的交点旋转180,所得抛物线的顶点坐标为(1,4),所得抛物线的解析式为:y=-x2+2x+3或y=-(x-1)2+4故选:B【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便二、填空题(本大题共6个小题,每小题3分,共18分)11、14【解析】根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解【详解】解:如图,在菱形ABCD中,BD2菱形的周长为10,BD2,AB5,BO3, AC3面积 故答案为 14【点睛】此题考查了菱形的性质及面积求法,难度不大12

16、、5【解析】根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积扇形OCD的面积,利用扇形的面积公式计算即可求解【详解】AOCBOD,阴影部分的面积=扇形OAB的面积扇形OCD的面积5故答案为:5【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积扇形OCD的面积是解题的关键13、甲【解析】首先比较平均数,平均数相同时选择方差较小的运动员参加【详解】 ,从甲和丙中选择一人参加比赛, ,选择甲参赛,故答案为甲【点睛】此题考查了平均数和方差,关键是根据方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立14、【解析】根据cosAMC ,设, ,由勾

17、股定理求出AC的长度,根据中线表达出BC即可求解【详解】解:cosAMC ,设, ,在RtACM中,AM 是 BC 边上的中线,BM=MC=3x,BC=6x,在RtABC中,故答案为:【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义15、1【解析】过点B作BEx轴于点E,根据D为OB的中点可知CD是OBE的中位线,即CD=BE,设A(x,),则B(2x,),故CD=,AD=,再由ADO的面积为1求出k的值即可得出结论解:如图所示,过点B作BEx轴于点E,D为OB的中点,CD是OBE的中位线,即CD=BE设A(x,),则B(2x,),CD=,AD=,ADO的面积为1

18、,ADOC=3,()x=3,解得k=1,故答案为116、2【解析】去分母得,m-1-x=0.方程有增根,x=1, m-1-1=0, m=2.三、解答题(共8题,共72分)17、(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点【详解】(

19、1)A1B1C1如图所示;(2)A2B2C2如图所示;(3)PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用18、(1)(2,0),(1,),(1,);y=x; y=x,y=x+;(2)半径为4,M(,);1r+1【解析】(1)如图2-1中,作BEOD交OA于E,CFOD交x轴于F求出OE、OF、CF、OD、BE即可解决问题;如图2-2中,作BEOD交OA于E,作PMOD交OA于M利用平行线分线段成比例定理即可解决问题;如图3-3中,作QMOA交OD于M利用平行线分线段成比例定理即可解决问题;(2)如图3中,作MFOA于F,作MNy轴交OA于N解直

20、角三角形即可解决问题;如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、F求出FN=NE=1时,M的半径即可解决问题.【详解】(1)如图21中,作BEOD交OA于E,CFOD交x轴于F,由题意OC=CD=1,OA=BC=2,BD=OE=1,OD=CF=BE=,A(2,0),B(1,),C(1,),故答案为(2,0),(1,),(1,);如图22中,作BEOD交OA于E,作PMOD交OA于M,ODBE,ODPM,BEPM,=,y=x;如图23中,作QMOA交OD于M,则有,y=x+,故答案为y=x,y=x+;(2)如图3中,作MFOA于F,作MNy轴交OA于N,=120,OMy轴

21、,MOA=30,MFOA,OA=4,OF=FA=2,FM=2,OM=2FM=4,MNy轴,MNOM,MN=,ON=2MN=,M(,);如图4中,连接OM,作MKx轴交y轴于K,作MNOK于N交M于E、FMKx轴,=120,MKO=60,MK=OK=2,MKO是等边三角形,MN=,当FN=1时,MF=1,当EN=1时,ME=+1,观察图象可知当M的半径r的取值范围为1r+1故答案为:1r+1【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题19、(1)详见解析;(2);(3)4OC1.

22、【解析】(1) 连接OQ,由切线性质得APO=BQO=90,由直角三角形判定HL得RtAPORtBQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得AOP=BOQ,从而可得P、O、Q三点共线,在RtBOQ中,根据余弦定义可得cosB=, 由特殊角的三角函数值可得B=30,BOQ=60 ,根据直角三角形的性质得 OQ=4, 结合题意可得 QOD度数,由弧长公式即可求得答案.(3)由直角三角形性质可得APO的外心是OA的中点 ,结合题意可得OC取值范围.【详解】(1)证明:连接OQ. AP、BQ是O的切线,OPAP,OQBQ,APO=BQO=90,在RtAPO和RtBQO中,RtA

23、PORtBQO,AP=BQ.(2)RtAPORtBQO,AOP=BOQ,P、O、Q三点共线,在RtBOQ中,cosB=,B=30,BOQ= 60 ,OQ=OB=4,COD=90,QOD= 90+ 60 = 150,优弧QD的长=,(3)解:设点M为RtAPO的外心,则M为OA的中点,OA=1,OM=4,当APO的外心在扇形COD的内部时,OMOC,OC的取值范围为4OC1【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出RtAPORtBQO;(2)通过解直角三角形求出圆的半径;(3)牢记

24、直角三角形外心为斜边的中点是解题的关键20、(1);(2)1或9.【解析】试题分析:(1)把A(2,b)的坐标分别代入一次函数和反比例函数表达式,求得k、b的值,即可得一次函数的解析式;(2)直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为yx5m,根据平移后的图象与反比例函数的图象有且只有一个公共点,把两个解析式联立得方程组,解方程组得一个一元二次方程,令=0,即可求得m的值.试题解析: (1)根据题意,把A(2,b)的坐标分别代入一次函数和反比例函数表达式,得,解得,所以一次函数的表达式为yx5.(2)将直线AB向下平移m(m0)个单位长度后,直线AB对应的函数表达式为y

25、x5m.由得, x2(5m)x80.(5m)2480,解得m1或9.点睛:本题考查了反比例函数与一次函数的交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解21、(1)20;(2)40,1;(3)【解析】试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率试题解析:解:(1)根据题意得:315%=20(人),故答案为20;(2)C级所占的百分比为100%=40%,表示“D等级”的扇形的圆心角为360=1;故答案为40、1(3)列表

26、如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生= =22、(1)证明见解析;(2)DE=CE,理由见解析;(3) 【解析】试题分析:(1)证明ABEACD,从而得出结论;(2) 先证明CDE=ACD,从而得出结论;(3)解直角三角形示得.试题解析:(1)ABE=ACD,A=A,ABEACD,;(2),又A=A,ADEACB,AED=ABC,AED=ACD+CDE,ABC=ABE+CBE,ACD+CDE=ABE+CBE,ABE=ACD,CDE=CBE,BE平分ABC,ABE=CBE,CDE=ABE=ACD,DE=CE;(3)CDAB,ADC=

27、BDC=90,A+ACD=CDE+ADE=90,ABE=ACD,CDE=ACD,A=ADE,BEC=ABE+A=A+ACD=90,AE=DE,BEAC,DE=CE,AE=DE=CE,AB=BC,AD=2,BD=3,BC=AB=AD+BD=5,在RtBDC中,在RtADC中,ADC=FEC=90, 23、(1)C;(2)100【解析】(1)根据中位数的定义即可作出判断;(2)先算出样本中C等级的百分比,再用总数乘以400即可.【详解】解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;故答案为C.(2)400 =10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论