




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD2由于受猪瘟的影响,今年9月份猪肉的价格两次大幅上涨,瘦肉价格由原来每千克元,连续两次上涨后,售价上升到每千克元,则下列方程中正确的是( )ABCD3如图,在OAB中,顶点O(0,0),A(3,4),B(3,4),将OAB与正方形
2、ABCD组成的图形绕点O逆时针旋转,每次旋转90,则第2019次旋转结束时,点D的坐标为()A(3,10)B(10,3)C(10,3)D(10,3)4如图,BA=BC,ABC=80,将BDC绕点B逆时针旋转至BEA处,点E,A分别是点D,C旋转后的对应点,连接DE,则BED为( )A50B55C60D655下列计算错误的是( )ABCD6在同一平面上,外有一定点到圆上的距离最长为10,最短为2,则的半径是( )A5B3C6D47若点,是函数上两点,则当时,函数值为( )A2B3C5D108如图,点O是ABC内一点、分别连接OA、OB、OC并延长到点D、E、F,使AD2OA,BE2OB,CF2O
3、C,连接DE,EF,FD若ABC的面积是3,则阴影部分的面积是()A6B15C24D279通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )ABCD10如图,已知矩形ABCD的顶点A,D分别落在x轴、y轴上,OD=2OA=6,AD:AB=3:1,则点C的坐标是()A(2,7)B(3,7)C(3,8)D(4,8)二、填空题(每小题3分,共24分)11已知关于x的一元二次方程的常数项为零,则k的值为_12如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为_.13如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2),点A的坐标为(2,0),
4、则点B的坐标为_14将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为 15二次函数的解析式为,顶点坐标是_16从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为_17如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为_. 18ABC是等边三角形,点O是三条高的交点若ABC以点O为旋转中心旋转后能与原来的图形重合,则ABC旋转的最小角度是_三、解答题(共66分)19(10分)如图,已知抛物线y=x2+bx+c经过A(3,0),B(0,3)两点(1
5、)求此抛物线的解析式和直线AB的解析式;(2)如图,动点E从O点出发,沿着OA方 向 以1个单位/秒的速度向终点A匀速运动,同时, 动点F从A点出发,沿着AB方向以个单位/ 秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,AEF为直角三角形?(3)如图,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由20(6分)某小学学生较多
6、,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品(1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能)(2)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率21(6分) (1)计算:2sin30+cos30tan60.(2)已知,且a+b=20,求a,b的值.22(8分)宋家州主题公园拟修建一座柳宗元塑像,如图所示,柳宗元塑像(塑像中高者)在高的假山上,在处测得塑像底部的仰角为,再沿方向前进到达处,测得塑像顶部的仰角为,求柳宗元塑
7、像的高度.(精确到.参考数据:,)23(8分)如图,已知矩形 ABCD在线段 AD 上作一点 P,使DPC BPC (要求:用尺规作图,保留作图痕迹,不写作法和证明)24(8分)如图,小明在地面A处利用测角仪观测气球C的仰角为37,然后他沿正对气球方向前进了40m到达地面B处,此时观测气球的仰角为45求气球的高度是多少?参考数据:sin370.60,cos370.80,tan370.7525(10分)如图1,在平面直角坐标系中,抛物线yx2+x+3与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,过点C作x轴的平行线交抛物线于点P连接AC(1)求点P的坐标及直线AC的解析式;(2)如图
8、2,过点P作x轴的垂线,垂足为E,将线段OE绕点O逆时针旋转得到OF,旋转角为(090),连接FA、FC求AF+CF的最小值;(3)如图3,点M为线段OA上一点,以OM为边在第一象限内作正方形OMNG,当正方形OMNG的顶点N恰好落在线段AC上时,将正方形OMNG沿x轴向右平移,记平移中的正方形OMNG为正方形OMNG,当点M与点A重合时停止平移设平移的距离为t,正方形OMNG的边MN与AC交于点R,连接OP、OR、PR,是否存在t的值,使OPR为直角三角形?若存在,求出t的值;若不存在,请说明理由26(10分)已知抛物线的顶点为,且过点.直线与轴相交于点.(1)求该抛物线的解析式;(2)以线
9、段为直径的圆与射线相交于点,求点的坐标.参考答案一、选择题(每小题3分,共30分)1、B【详解】解:根据题意可得:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0时,y0,.2、A【分析】增长率问题,一般用增长后的量=增长前的量(1+增长率),先表示出第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于a%的方程【详解】解:当猪肉第一次提价时,其售价为;当猪肉第二次提价后,其售价为故选:.【点睛】本题考查了求平均变化率的方法若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1x)2=b3、C【分析】先求出A
10、B=1,再利用正方形的性质确定D(-3,10),由于2019=4504+3,所以旋转结束时,相当于OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,由此求出点D坐标即可【详解】A(3,4),B(3,4),AB=3+3=1四边形ABCD为正方形,AD=AB=1,D(3,10)2019=4504+3,每4次一个循环,第2019次旋转结束时,相当于OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,每次旋转,刚好旋转到如图O的位置点D的坐标为(10,3)故选:C【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:
11、30,45,10,90,1804、A【分析】首先根据旋转的性质,得出CBD=ABE,BD=BE;其次结合图形,由等量代换,得EBD=ABC;最后根据等腰三角形的性质,得出BED=BDE,利用三角形内角和定理求解即可【详解】BDC绕点B逆时针旋转至BEA处,点E,A分别是点D,C旋转后的对应点,CBD=ABE,BD=BE,ABC=CBD+ABD,EBD=ABE +ABD,ABC=80,EBD=ABC=80,BD=BE,BED=BDE=(180-EBD)=(180-80)=50,故选:A【点睛】本题主要考查了旋转的性质、等腰三角形的性质,以及三角形内角和定理解题的关键是根据旋转的性质得出旋转前后的
12、对应角、对应边分别相等,利用等腰三角形的性质得出“等边对等角”,再结合三角形内角和定理,即可得解5、A【分析】根据算术平方根依次化简各选项即可判断.【详解】A: ,故A错误,符合题意;B:正确,故B不符合题意;C:正确,故C不符合题意;D:正确,故D不符合题意.故选:A.【点睛】此题考查算术平方根,依据 ,进行判断.6、D【分析】由点P在圆外,易得到圆的直径为10-2,然后计算圆的半径即可.【详解】解:点P在圆外圆的直径为10-2=8圆的半径为4故答案为D.【点睛】本题考查了点与圆的位置关系,关键是根据题意确定圆的直径,是解答本题的关键.7、B【分析】根据点A(x1,5),B(x2,5)是函数
13、y=x22x+1上两对称点,可求得x=x1+x2=2,把x=2代入函数关系式即可求解【详解】点A(x1,5),B(x2,5)是函数y=x22x+1上两对称点,对称轴为直线x=1,x1+x2=21=2,x=2,把x=2代入函数关系式得y=2222+1=1故选:B【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,以及二次函数的性质求出x1+x2的值是解答本题的关键8、C【解析】根据三边对应成比例,两三角形相似,得到ABCDEF,再由相似三角形的性质即可得到结果【详解】AD2OA,BE2OB,CF2OC,ABCDEF,ABC的面积是3,SDEF27,S阴影SDEFSABC1故选:C【点睛】本
14、题考查了相似三角形的判定和性质,掌握相似三角形的判定和性质是解题的关键9、A【分析】根据阴影部分面积的两种表示方法,即可解答【详解】图1中阴影部分的面积为:,图2中的面积为:,则故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积10、A【解析】过C作CEy轴于E,四边形ABCD是矩形,CD=AB,ADC=90,ADO+CDE=CDE+DCE=90,DCE=ADO,CDEADO,OD=2OA=6,AD:AB=3:1,OA=3,CD:AD=,CE=OD=2,DE=OA=1,OE=7,C(2,7),故选A二、填空题(每小题3分,共24分)11、1【分析】由一元二次方
15、程(k1)x1+6x+k13k+10的常数项为零,即可得 ,继而求得答案【详解】解:一元二次方程(k1)x1+6x+k13k+10的常数项为零,由得:(k1)(k1)0,解得:k1或k1,由得:k1,k的值为1,故答案为:1【点睛】本题是对一元二次方程根的考查,熟练掌握一元二次方程知识是解决本题的关键.12、【分析】根据旋转的性质可知ACC1为等边三角形,进而得出BC1=CC1=AC1=2,ADC1是含20的直角三角形,得到DC1的长,利用线段的和差即可得出结论【详解】根据旋转的性质可知:AC=AC1,CAC1=60,B1C1=BC,B1C1A=C,ACC1为等边三角形,AC1C=C=60,C
16、C1=AC1C1是BC的中点,BC1=CC1=AC1=2,B=C1AB=20B1C1A=C=60,ADC1=180-(C1AB+B1C1A)=180-(20+60)=90,DC1=AC1=1,B1D=B1C1-DC1=4-1=2故答案为:2【点睛】本题考查了旋转的性质以及直角三角形的性质,得出ADC1是含20的直角三角形是解答本题的关键13、 (6,0)【详解】解:过点P作PMAB于M,则M的坐标是(4,0)MB=MA=4-2=2,点B的坐标为(6,0)14、【解析】试题分析:根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率因此,theorem中的
17、7个字母中有2个字母e,任取一张,那么取到字母e的概率为15、【分析】由已知和抛物线的顶点式,直接判断顶点坐标【详解】解:二次函数的解析式为:,二次函数图象的顶点坐标为:(-1,3)故答案为:(-1,3)【点睛】本题考查了抛物线的顶点坐标与抛物线解析式的关系,抛物线的顶点式:y=a(x-h)2+k,顶点坐标为(h,k)16、【分析】采用列举法求概率【详解】解:随机抽取的所有可能情况为:甲乙;甲丙;甲丁;乙丙;乙丁;丙丁六种情况,则符合条件的只有一种情况,则P(抽取的2名学生是甲和乙)=16=故答案为:【点睛】本题考查概率的计算,题目比较简单17、4【分析】作AEx轴于点E,BDx轴于点D得出O
18、BDOAE,根据面积比等于相似比的平方结合反比例函数的几何意义求出,再利用条件“AO=AC”得出,进而分别求出和相减即可得出答案.【详解】作AEx轴于点E,BDx轴于点DOBDOAE根据反比例函数的几何意义可得:,AO=ACOE=EC,故答案为4.【点睛】本题考查的是反比例函数与几何的综合,难度系数较大,需要熟练掌握反比例函数的几何意义.18、120【解析】试题分析:若ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得ABC旋转的最小角度为18060=120故答案为120考点:旋转对称图形三、解答题(共66分)19、(1)抛物线的解析式为y=x2+2x+3,直线AB的解析
19、式为y=x+3;(2)t=或;(3)存在面积最大,最大值是,此时点P(,)【分析】(1)将A(3,0),B(0,3)两点代入y=x2+bx+c,求出b及c即可得到抛物线的解析式,设直线AB的解析式为y=kx+n,将A、B两点坐标代入即可求出解析式;(2)由题意得OE=t,AF=t,AE=OAOE=3t,分两种情况:若AEF=AOB=90时,证明AOBAEF得到=,求出t值;若AFEAOB=90时,证明AOBAFE,得到=求出t的值;(3)如图,存在,连接OP,设点P的坐标为(x,x2+2x+3),根据,得到,由此得到当x=时ABP的面积有最大值,最大值是,并求出点P的坐标.【详解】(1)抛物线
20、y=x2+bx+c经过A(3,0),B(0,3)两点,解得,抛物线的解析式为y=x2+2x+3,设直线AB的解析式为y=kx+n, ,解得,直线AB的解析式为y=x+3;(2)由题意得,OE=t,AF=t,AE=OAOE=3t,AEF为直角三角形,若AEF=AOB=90时,BAO=EAF,AOBAEF=,t=若AFEAOB=90时,BAO=EAF,AOBAFE,=,t=;综上所述,t=或;(3)如图,存在,连接OP,设点P的坐标为(x,x2+2x+3),,=,0,当x=时ABP的面积有最大值,最大值是,此时点P(,)【点睛】此题是二次函数与一次函数的综合题,考查了待定系数法求函数解析式,相似三
21、角形的判定及性质,函数与动点问题,函数图象与几何图形面积问题.20、(1)不可能事件;(2).【详解】试题分析:(1)根据随机事件的概念即可得“小李同学在该天早餐得到两个油饼”是不可能事件;(2)根据题意画出树状图,再由概率公式求解即可试题解析:(1)小李同学在该天早餐得到两个油饼”是不可能事件;(2)树状图法即小张同学得到猪肉包和油饼的概率为考点:列表法与树状图法21、 (1); (2) a=8,b=12【分析】(1)代入特殊角的三角函数值,根据二次根式的运算法则计算即可;(2)设=k,即a=2k,b=3k,代入a+b=20,求出k的值,即可求出a,b的值.【详解】(1)原式= =1+=;(
22、2)设=k,即a=2k,b=3k,代入a+b=20,得2k+3k=20,k=4,a=8,b=12.【点睛】本题考查了特殊角的三角函数值,实数的混合运算,比例的性质,熟练掌握各知识点是解答本题的关键.22、柳宗元塑像的高度约为.【分析】在中,利用正切函数的定义求得AC 的长,继而求得BC的长,在中,同样利用正切函数的定义求得CD的长,从而求得结果.【详解】在中,在中,答:柳宗元塑像的高度约为【点睛】本题考查了解直角三角形的应用俯角仰角问题,要先将实际问题抽象成数学问题,分别在两个不同的直角三角形中,借助三角函数的知识,研究角和边的关系.23、详见解析【分析】以为圆心,为半径画弧,以为直径画弧,两
23、弧交于点,连接并延长交于点,利用全等三角形和角平分线的判定和性质可得【详解】解:如图,即为所作图形:DPC BPC.【点睛】本题是作图复杂作图,作线段垂直平分线,涉及到角平分线的判定和性质,全等三角形的判定和性质,难度中等.24、120m【分析】在RtACD和RtBCD中,设CDx,分别用x表示AD和BD的长度,然后根据已知AB40m,列出方程求出x的值,继而可求得气球离地面的高度【详解】设CDx,在RtBCD中,CBD45,BDCDx,在RtACD中,A37,tan37,AD,AB40m,ADBDx40,解得:x120,气球离地面的高度约为120(m)答:气球离地面的高度约为120m【点睛】
24、本题考查了解直角三角形的应用,关键是根据仰角构造直角三角形,利用三角函数解直角三角形25、(1)P(2,3),yACx+3;(2);(3)存在,t的值为3或,理由见解析【分析】(1)由抛物线yx2+x+3可求出点C,P,A的坐标,再用待定系数法,可求出直线AC的解析式;(2)在OC上取点H(0,),连接HF,AH,求出AH的长度,证HOFFOC,推出HFCF,由AF+CFAF+HFAH,即可求解;(3)先求出正方形的边长,通过ARMACO将相关线段用含t的代数式表示出来,再分三种情况进行讨论:当ORP90时,当POR90时,当OPR90时,分别构造相似三角形,即可求出t的值,其中第三种情况不存
25、在,舍去【详解】(1)在抛物线yx2+x+3中,当x0时,y3,C(0,3),当y3时,x10,x22,P(2,3),当y0时,则x2+x+3=0,解得:x14,x26,B(4,0),A(6,0),设直线AC的解析式为ykx+3,将A(6,0)代入,得,k,yx+3,点P坐标为P(2,3),直线AC的解析式为yx+3;(2)在OC上取点H(0,),连接HF,AH,则OH,AH,且HOFFOC,HOFFOC,HFCF,AF+CFAF+HFAH,AF+CF的最小值为;(3)正方形OMNG的顶点N恰好落在线段AC上,GNMN,设N(a,a),将点N代入直线AC解析式,得,aa+3,a2,正方形OMNG的边长是2,平移的距离为t,平移后OM的长为t+2,AM6(t+2)4t,RMOC,ARMACO,即,RM2t,如图31,当ORP90时,延长RN交CP的延长线于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 嵩山少林武术职业学院《航空航天概论》2023-2024学年第二学期期末试卷
- 贵州工业职业技术学院《教育法规与职业道德》2023-2024学年第二学期期末试卷
- 河北经贸大学《华为HCIA-GausDB应用开发实训》2023-2024学年第一学期期末试卷
- 西北大学现代学院《生药学实验》2023-2024学年第一学期期末试卷
- 桂林信息科技学院《伦理学理论教学》2023-2024学年第一学期期末试卷
- 上海兴伟学院《汽车电器与电子技术B》2023-2024学年第二学期期末试卷
- 遂宁能源职业学院《英语二》2023-2024学年第二学期期末试卷
- 建筑劳务联合经营合同
- 建筑工程扩大劳务清包合同
- 厨师聘用合同协议书
- 《工艺人员设备变更》课件
- 沟槽开挖过路钢便桥搭设施工方案
- 读后续写个人成长类+My+mother's+gift+讲义 高考英语作文复习专项
- 小学生古诗词知识竞赛题(附答案)
- 建设工程结算审核定案表
- 小学数学大单元教学设计策略
- 招标代理机构入围服务 投标方案(技术标)
- 07FK02防空地下室通风设备安装图集
- Global-Recycled-Standard-4.0全球回收标准4.0培训教材(GRS4.0培训教材)
- 台风灾害风险识别与评估系统设计方案
- 牙周检查记录表
评论
0/150
提交评论