版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.wd.wd.wd.西 华 大 学数学建模竞赛B题:篮球比赛问题专业班级:* 姓名:刁述祥 :*姓名:周 鑫 :*姓名:王 飞 :*2011年5月28日摘要本文主要研究了某大学篮球比赛中技术指标、成绩、排名等相关问题,并对各篮球队提出了技术方面的相关建议。针对问题一,本文运用灰色系统理论建设了一个综合评价模型,求解出每支代表队的技术指标与该队成绩之间的关联关系。首先,本文对每个队的各项指标数据进展统计处理、标准化处理无量纲化,并求解出各项指标的差数列表。根据灰色系统理论建设了综合评价模型。最后通过Excle求解,得出了各个参赛队的技术指标与成绩之间的关联度。结果见问题求解及附表。针对问题二,本
2、文按照技术指标对代表队成绩奉献的大小,对这些技术指标进展排序。本文认为:某项技术指标与成绩的关联度越高,那么该技术指标对代表队的成绩的影响越大。因此,本文将关联度大小做为衡量奉献度大小的依据。最后对每个学院的各项技术指标进展合理的排名。结果见问题求解及附录针对问题三,本文找出了对各代表队成绩起重要作用的关键比赛场次。首先,本文认为关系是否被淘汰的场次、关系是否晋级的场次和积分一样的两支队伍之间的比赛场次是重要的场次。然后引入关键度的概念,按照关键度的大小对重要场次进展评比,通过这个标准找出了各参赛队的关键的场次。针对问题四,本文采用综合指数法建设了一个综合评价模型,预测了最后的冠军得主,并且将
3、12支代表队进展了排名。首先,本文根据积分和得分比,从两个小组选出了四支参加决赛的队伍A组:数学学院、化学学院 B组:信电学院、机电学院。然后对各项数据进展归一化处理、标准化处理,建设了一个综合评价模型。接着本文通过Excle求解,预测数学学院代表队能够获得冠军。最后本文通过积分数和比分率对未进入决赛的队伍进展排名。结果如下:1-4名:数学学院、信电学院、机电学院、化学学院5-8名:管理学院、物理学院、测绘学院、生物学院9-12名:能源学院、计算机学院、资源学院、地理学院针对问题五,本文对各个参赛队在技术方面提出了一些建议。首先,本文将所有参赛队的各项指标分别进展处理,求得各项指标的平均值作为
4、一个参考量。然后通过作图的方式进展评比,找出各个学院比较落后的技术指标。最后根据比较结果并参考各项指标的关联度提出了相应的建议。在模型的优化和推广中,本文考虑了时间安排对结果的影响,提出了增加权重指标进展排名的思想,优化了模型,最后对模型的推广进展了阐述。关键词:灰色关联度 标准化指标 综合指数 得分比问题重述运发动比赛过程的技术表现是决定竞赛成绩的主要因素之一。篮球竞赛临场技术统计数据既是衡量运发动技术水平的量化指标也是判定运动队竞赛成绩的客观标准。某大学有12个学院,每个学院派出一支男子篮球队参加校内篮球比赛。首先进展分组赛,共分两组,每组6支代表队;小组赛完毕后,每组选出两支代表队参加第
5、二阶段的决赛。附表1和附表2分别为第一组和第二组的比赛结果。请你根据这些数据,研究各个代表队的以下问题:1每支代表队的技术指标与该队的成绩之间的关联关系。2按照技术指标对代表队成绩奉献的大小,将这些技术指标进展排序。3找出对代表队成绩起重要作用的关键比赛场次。4根据这两个小组赛的成绩,预测哪支代表队最有可能夺冠,并将这12支代表队的名次进展排序。5对每支代表队给出几点技术方面的改进建议,以提升该队的竞技水平。符号说明-和某代表队比赛的其他队伍的编号=1、2、3、4、5;-某代表队的17项技术指标=1、2、3.16、17;-某代表队的球员=4、5、6.16;-灰色关联度模型中的分辨系数,01。R
6、-进入决赛所必须得到的最低积分Z-满足第一种情况的所有的场次集合-不满足第一种情况且满足第二种情况的所有场次的集合-不满足第一二种情况且满足第三种情况的所有比赛场次的集合-不满足第一二三种情况的其他特殊情况的集合-某代表队与第 代表队比赛时第 项指标与总成绩的关联度。-某代表队和第 队比赛时球员第 项的指标数;-某代表队和第 个队比赛时第 项的指标总数。-某代表队标准化处理后和第 个队比赛时第 项的指标总数。-某代表队标准化处理后技术指标与总成绩的的差值的绝对值。-第 只代表队的关键场次的集合-各项指标的个体指数。-参加决赛的四支队伍的综合指标。-第项技术指标与总成绩的标准最大偏差值-第项技术
7、指标与总成绩的标准最小偏差值模型假设题目中所给条件和数据是确定的、有效的。忽略各种外界、主观因素的影响,如:裁判误判、放弃比赛、场地影响等。默认在所有比赛中所有队伍都是正常发挥,不存下超常发挥、状态不良等情况。忽略个人对总成绩的影响,队员上场时间不作为技术指标。假设灰色关联度模型中分辨系数:=0.5 。每组进展循环赛,每个组共有15场比赛,每个代表队有5场比赛。假设在小组赛中积分规那么为:胜:2分,负:0分,没有平局。.从积分和比分率两个方面评判是否有资格进入决赛。关键场次分为三类,一类是决定是否淘汰的场次,一类是决定是否入选决赛的场次,一类如果两支队伍积分一样,那么二者比赛的那一场也是关键场
8、次。模型的建设与求解针对问题一一、问题的分析1、题意分析及简化处理1通过对题目的仔细阅读和初步分析我们得到如下信息:一共有12个学院的12支篮球代表队,每6个代表队为一组进展比赛。比赛为小组循环制,因此每个代表队都会参加五场比赛。题目中给出了各代表队每场比赛中每个球员上场时间、2分球、3分球、罚球、进攻、防守等相关数据。在小组循环赛中没有队伍弃权或放弃比赛。2需要解决的问题:对各个篮球代表队的各项技术指标数据进展统计、计算、分析,得出每支代表队的技术指标与该队的成绩之间的关联关系。3在问题的条件和目的明确之后,我们对问题进展初步的分析,提出了如下 基本假设和简化运算方法:默认题中所给每个队的各
9、项技术指标数据能够客观反映一个队的整体水平。不用单独的去分析每个队员的各项技术指标情况,而将每一项指标做为一个整体来讨论分析。简化运算,提高模型的可操作性。因为从整体考虑,因此队员上场时间不纳入技术指标的范围。最后确定在一场比赛中的技术指标为:2分球、三分球、罚球的进球数、投篮数、命中率、进攻次数、防守次数、攻防合计次数、犯规次数、失误次数、抢断次数、盖帽次数。因为12支代表队的各项指标种类一样,因此选取一支代表队作为例子推导建设模型,最后通过建设的模型分别求解其他11支代表队的结果。 基本模型的分析推导通过分析,题中所给的各种技术指标的数据没有统一的单位度量,例如:进攻、防守等技术指标的单位
10、是“次数 ,而2分球、3分球命中率是一个比率。因此需要通过标准化处理无量纲化,对数据进展统一,然后对处理后的数据进展分析和比较得出各技术指标和成绩之间的关联关系。通过大量查阅资料,本文选择采用灰色系统中的灰色关联分析法来进展求解。设:任取一个代表队为T;设:-和T代表队比赛的其他队伍的编号=1、2、3、4、5;设:-T代表队的17项技术指标=1、2、3.16、17;设:-T代表队的球员=4、5、6.16;设:-T代表队和第 队比赛时球员第 项的指标数;设:-T代表队和第 个队比赛时第 项的指标总数。: = 首先,通过前面的分析,将每一项指标做为一个整体来讨论分析。因此我们可得,第 个队比赛时第
11、 项的指标总数为:可得: = 其次,因为所求的指标总数不统一,我们对数据进展标准化处理。即取在一场比赛中数据作为参考数据,然后将五组数据分别对这组数据进展商运算。从而得到一组没有量纲的数据,把各种不同单位数据建设有机的联系。设:-T代表队标准化处理后和第 个队比赛时第 项的指标总数。设:-T代表队在5场比赛中选取的第 项的指标总数参考数据。标准化的各指标总数:1 1 可得到: = 1 1 然后,通过求解出的标准化的无量纲数据,我们可以建设各项指标与总成绩的差数列,从而可以得到各指标对总成绩的偏差范围。设:-T代表队标准化处理后和第 个队比赛时第 项的指标总数。设:- T代表队标准化处理后技术指
12、标与总成绩的的差值的绝对值。那么:0 0 计算可得: = 0 0 比较所求得的数据我们可以得到每项技术指标有: 最大偏差:最小偏差:设:-为分辨系数,01。设: -T代表队与第 代表队比赛时第 项指标与总成绩的关联度。那么在每场比赛中各项指标与总成绩的 基本关联系模型为:其中:=1、2、3、4、51、2、3.16、17通过对 基本模型的分析和推导,我们得到了各项指标与总成绩的 基本关系模型。有了可靠的数学推导方法,由此深入,我们可以建设最终的模型。二、模型的建设通过上面对问题一的题意分析和 基本模型的推导过程,我们可以得到在每场比赛中各项指标都与总成绩有一个关联系数。每个代表队有五组比赛成绩,
13、因此只要我们对这五个关联度求均值,就能求出各项指标与总成绩的最终的关联关系度。因为12支代表队的指标种类一样,可以采用一样的模型进展求解,因此这次取任意一个代表队建设模型。设:T-任意取一支代表队的名称;设:-和T代表队比赛的其他队伍的编号1、2、3、4、5;设:-T代表队的17项技术指标1、2、3.16、17;设:-参加比赛的总的次数。设:-T代表队与第 代表队比赛时第 项指标与总成绩的关联度;设:-各项指标与成绩的最终关联度。最终建设的各项指标与总成绩之间的关联度模型为:约束条件:比赛次数:5对手编号:=1、2、3、4、5技术指标:1、2、3.16、17每场比赛的各项指标与总成绩的关联关系
14、值:且:分辨系数: 01最大差值:最小差值:对应差数列:标准化后的各指标总数:初始各指标总数:各队员在每场比赛中的各项指标:三、模型的求解1通过上面的分析和建设的模型,求解过程如下:统计处理。将各个代表队在各场比赛中的的各项技术指标进展统计求和。标准化处理无量纲化。采用除运算去掉成绩和各技术指标量纲,并转化为一个比较小的数据,简化运算。求解差数列,将标准化处理后的各指标与总成绩做差运算,得到绝对值,并提出各项指标的最大偏差和最小偏差数据。求解关联系数。通过建设的 基本关系模型,确定分辨系数的值,求解出在每场比赛中各技术指标与总成绩之间的关联系数。求解关联度。将已求解出来的关联系数取平均值,求解
15、出各项技术指标与总成绩的关联系数。2以计算机学院为例:根据指标总数模型 求解,统计每场比赛各项技术指标之和。最后通过Excle统计处理后的数据如下:计算机学院与其他学院比赛的技术指标1 对手技术指标数学学院物理学院化学学院生物学院资源学院总得分分84946962902分命中次22171413222分总投次40323429382分命中率%5553.1341.1844.8357.893分命中次914910113分总投次25302937243分命中率%3646.6731.0327.0345.83罚中次数次131814613罚投次数次1526191026罚进率%86.6769.2373.686050进
16、攻次1587136防守次2516322616合计次4024393922助攻次91115614犯规次2130212725失误次1312141912抢断次1232810总积分分12211表12 根据标准化模型 ,将总成绩和所有指标数据进展无量纲化处理。通过分析,与数学学院比赛时计算机学院代表队的各项指标的数据比较适中,因此在这里我们选择和数学学院比赛的各项技术指标数据作为参考数据,做商运算。通过Excle计算最后得到如下数据:计算机学院与各学院之间的比赛指标2对手技术指标数学学院物理学院化学学院生物学院资源学院总得分11.11900.82140.73811.07142分命中10.77270.636
17、40.59091.00002分总投10.80000.85000.72500.95002分命中率10.96600.74870.81511.05253分命中11.55561.00001.11111.22223分总投11.20001.16001.48000.96003分命中率11.29640.86190.75081.2731罚中次数11.38461.07690.46151.0000罚投次数11.73331.26670.66671.7333罚进率10.79880.85010.69230.5769进攻10.53330.46670.86670.4000防守10.64001.28001.04000.6400
18、合计10.60000.97500.97500.5500助攻11.22221.66670.66671.5556犯规11.42861.00001.28571.1905失误10.92311.07691.46150.9231抢断10.25000.16670.66670.8333盖帽12.00002.00001.00001.0000表23经过标准化处理后,我们得到了总成绩与各项指标的无量纲化数据,统一了度量之后我们就可以求解出对应的差数列以及差数列中对应的各项指标的最大偏差值和最小偏差值。通过差值模型 ,我们带入通过标准化处理后的数据,通过Excle求解结果如下:计算机学院与各学院之间的比赛指标差数列及
19、最大偏差最小偏差 对手技术指标数学学院物理学院化学学院生物学院资源学院MinMax2分命中00.34630.18510.14720.071400.34632分总投00.31900.02860.01310.121400.31902分命中率00.15300.07270.07700.018900.15303分命中00.43650.17860.37300.150800.43653分总投00.08100.33860.74190.111400.74193分命中率00.17730.04050.01270.201600.2016罚中次数00.26560.25550.27660.071400.2766罚投次数0
20、0.61430.44520.07140.661900.6619罚进率00.32030.02870.04580.494500.4945进攻00.58570.35480.12860.671400.6714防守00.47900.45860.30190.431400.4790合计00.51900.15360.23690.521400.5214助攻00.10320.84520.07140.484100.8452犯规00.30950.17860.54760.119000.5476失误00.19600.25550.72340.148400.7234抢断00.86900.65480.07140.238100.
21、8690盖帽0 0.8810 1.1786 0.2619 0.0714 0 1.1786 表34得到差数列后,我们得到了各项指标在每场比赛和总成绩之间的最大偏差值和最小偏差值。建设的 基本关系模型为:求解出各场比赛各技术指标与总成绩的关联关系,最后通过最终的灰色关联系数模型求解得出最后的关系度。根据上网查阅资料和分析,我们设分辨系数=0.5,通过Excle计算得到了计算机学院与各学院之间的比赛指标的关联系数和关联度如下表:计算机学院与各学院之间的比赛指标的关联系数和关联系数和关联度 对手技术指标数学学院物理学院化学学院生物学院资源学院关联度2分命中10.62980.76100.80010.89
22、190.81662分总投10.64880.95380.97830.82910.88202分命中率10.79380.89020.88440.96900.90753分命中10.57450.76740.61240.79620.75013分总投10.87920.63510.44270.84100.75963分命中率10.76870.93570.97880.74510.8857罚中次数10.68930.69760.68060.89190.7919罚投次数10.48960.56960.89190.47100.6844罚进率10.64790.95360.92790.54370.8146进攻10.50150.
23、62420.82090.46740.6828防守10.55160.56240.66120.57730.6705合计10.53170.79330.71330.53050.7138助攻10.85100.41080.89190.54900.7405犯规10.65560.76740.51830.83190.7547失误10.75040.69760.44890.79890.7392抢断10.40410.47370.89190.71220.6964盖帽1 0.4008 0.3333 0.6923 0.8919 0.6637 表43将以上求解过程推广到其他11个学院的代表队中,我们即可以得到各个学院篮球代表
24、队的各项技术指标与总成绩的关联度。问题一最终的结果如下:A组学院计算机学院各技术指标与总成绩的关联度2分中2分投2分 %3分中3分投3分 %罚中罚次罚 %关联度0.81660.88200.90750.75010.75960.88570.79190.68440.8146进攻防守合计助攻犯规失误抢断盖帽关联度0.68280.67050.71380.74050.75470.73920.69640.6637数学学院各技术指标与总成绩的关联度2分中2分投2分 %3分中3分投3分 %罚中罚次罚 %关联度0.74180.78910.83380.61300.70970.68510.77660.81360.86
25、61进攻防守合计助攻犯规失误抢断盖帽关联度0.67470.64390.68200.84140.79010.82410.78790.6148(详细数据请见附件)B组学院机电学院各技术指标与总成绩的关联度2分中2分投2分 %3分中3分投3分 %罚中罚次罚 %关联度0.95230.92760.82650.85730.84210.83440.78930.71070.9384进攻防守合计助攻犯规失误抢断盖帽关联度0.76740.88620.87680.82820.76200.80650.80460.7702信电学院各技术指标与总成绩的关联度2分中2分投2分 %3分中3分投3分 %罚中罚次罚 %关联度0.
26、76380.81690.86700.79230.85520.82190.70830.70250.9171进攻防守合计助攻犯规失误抢断盖帽关联度0.76530.65750.73480.79260.79780.69760.73260.7688(详细数据请见附件)针对问题二问题的分析通过对题意的仔细阅读和分析,本文需要解决的问题是根据技术指标的对成绩奉献度的大小,对这些技术指标进展排名。通过查阅互联网资料和社会经历分析,再一支篮球队中,每一项技术指标都对成绩有影响作用。并且关联度越高那么对结果的影响越大。因此,我们简化运算,通过判定各项指标的关联度的大小来对奉献大小进展排名。2、问题的求解以计算机学
27、院为例,根据模型一建设的关联度模型和求解出来的各项指标的关联度。最后的排名如下表:A组学院数学学院各技术指标排名123456789技术指标罚 %助攻2分 %失误罚次犯规2分投抢断罚中1011121314151617技术指标2分中3分投3分 %合计进攻防守盖帽3分中物理学院各技术指标排名123456789技术指标2分 %2分中犯规助攻2分投3分 %3分中罚中防守1010111213141516技术指标合计盖帽罚次罚 %3分投失误进攻抢断(详细数据请见附件)B组学院地质学院各技术指标排名123456789技术指标2分 %2分中3分 %合计抢断罚 %3分中防守3分投1011121314151617技
28、术指标失误助攻犯规盖帽进攻2分投罚中罚次信电学院各技术指标排名123456789技术指标罚 %2分 %3分投3分 %2分投犯规助攻3分中盖帽1011121314151617技术指标进攻2分中合计抢断罚中罚次失误防守(详细数据请见附件)针对问题三一、问题的分析1、题意的分析及简化处理1通过对问题的仔细阅读和初步分析,我们得到如下信息:12支队伍被分成2组,每组6个代表队。每组进展循环赛,每个组共有15场比赛,每个代表队有5场比赛。最后每个有且仅2个代表队进入决赛。本问主要是针对小组循环赛的比赛。2需要解决的问题是:找出每个代表队成绩起重要作用的关键场次。3在问题的条件和目的明确之后,我们对问题进
29、展初步的分析,提出了如下 基本假设和简化运算方法:在比赛中不想存在平局。比赛以积分制。胜积1分,败积0分。各小组代表队比赛的场次顺序按照题目所给数据的顺序。最后选择两支积分最高的队伍进入决赛。如果有两只队伍积分一样,且只有一个进入绝赛的名额,那么判定在他们比赛的那一场获得胜利的队伍参加决赛。如果有三只或三只以上的队伍积分一样时,只有一个晋级名额时,比较它们的比分率之和,比分率之和最大的队伍就晋级参加决赛。 基本模型的分析与推导在对题意和问题要求做出了分析假设和简化过之后。我们开场推导 基本的求解模型。因为我们知道了最后的总成绩,因此可以求解出选入决赛的最低要求,即总积分应该排名第二,且积分排名
30、第一的队伍只有一个。我们采用这个排名第二的积分数值作为最低要求,在这里设为 。通过分析,关键场次主要分为三个局部:1第一种情况:当比赛还未进展完,积分数差一分就能到达最低要求分数时的后面的比赛。如果后面的比赛胜利了,那么顺利的进入决赛。后面的比赛就比不再作为关键场次。如果没有胜利,那么关键场次应该一直向后增加,直到再取得一场胜利或者比赛完毕。本文在这里将这些场次统一设为 Z 。第二种情况:当已经输掉了5-R+1场比赛时之后的比赛。因为如果再输掉一场那么队伍将无缘于决赛,因此下一场是决定是否能够进入比赛的关键场次。如果下一场比赛输掉了,那么该队已经不能不能进入决赛,因此后面的比赛将不再作为关键场
31、次。如果在后一场比赛中获胜了,那么再后面一场比赛又变为关键的比赛场次,直到比赛完毕或者再输掉一场比赛。本文取不满足第一种情况的这些场次统一设为 。第三种情况:当两支队伍积分一样且都排名第二的情况下,因为最终的判定规那么是两支队伍比赛时获胜的一方进入决赛。因此两只队伍之间的比赛也将成为关键的比赛场次。本文取不满足第一种情况及第二种情况的这些场次统一设为 。第四种情况:当出现三支及以上的队伍出现积分一样的情况下,经过上面的判别之后对剩下队伍选取最先到达该积分的队伍进入决赛。但这些情况包含在了第一种情况内,因此这里不再做单独的讨论,如果有其他情况那么统一设这些场次为。二、模型的建设根据以上的分析,我
32、们可以得到求解关键场次的模型。设: -代表队的编号 设:R-进入决赛所必须得到的最低积分。设:- 第只代表队的关键场次的集合;设:Z-满足第一种情况的所有的场次集合。设:-不满足第一种情况且满足第二种情况的所有场次的集合。设:-不满足第一二种情况且满足第三种情况的所有比赛场次的集合。设:-不满足第一二三种情况的其他特殊情况的集合。那么初步筛选的关键场次的集合为:约束条件:在求解出关键场次的集合后,按照关键度的大小来进展排名,最后求得最关键场次作为结果。设:-为关键度。本文在这里假设关键度的排名为:最后通过关联度的排序,求解出各学院代表队最关键的场次。三、模型的求解通过以上建设的模型,通过题目中
33、给出的数据我们得到了两个小组的积分情况,因此在A、B 两组中对应入围 基本分数R 的取之情况为:A组: B组:通过Eecle及查阅判断,我们最终得到了参赛的12支代表队的关键比赛场次。经过删选和评比,最关键的场次如下:A组学院化学学院关键比赛场次:化学学院VS 生物学院数学学院关键比赛场次:数学学院VS 化学学院物理学院关键比赛场次:物理学院VS 化学学院生物学院关键比赛场次:生物学院VS 化学学院资源学院关键比赛场次:资源学院VS数学学院计算机学院关键比赛场次:计算机学院VS资源学院B组学院信电学院关键比赛场次:信电学院VS 能源学院机电学院关键比赛场次:机电学院VS 地质学院测量学院关键比
34、赛场次:测量学院VS 管理学院管理学院关键比赛场次:管理学院VS 信电学院能源学院关键比赛场次:能源学院VS 管理学院地质学院关键比赛场次:地质学院VS 能源学院(详细求解数据请见附录。)针对问题四一、问题的分析1、题意的分析及简化处理(1)通过对问题的仔细阅读,本问需要解决的问题是:1预测哪支代表队最有可能夺冠2将这12支代表队的名次进展排序2通过对题意的初步分析,现确定如下条件和假设:小组比赛完毕后,会选取两支队伍进入决赛。按照前面的假设,各小组中积分最高的两支队伍将进入决赛。冠军肯定产生于进入决赛的四支队伍中。决赛中不会出现平局,因此冠军只能在某一支队伍获得。没有进入决赛的队伍按照积分进
35、展排名。如果积分一样那么根据其比分率的和的大小进展排序。 基本模型的分析和推导1预测哪支队伍能够夺冠因为在之前只进展过小组循环赛,两个小组的队伍之间没有比赛过。又因为两组对应的第一名和第二名成绩一样,因此不能通过积分来判别最后的冠军。经过分析和查阅资料,本文采用综合指数法建设综合评价模型。求解出对四个队伍技术指标的综合指数进展比较,最后预测出那支队伍最容易夺得冠军。首先,本文根据上面的假设选择各小组进入决赛的队伍。然后,我们对四支队伍中的指标进展处理。在17项技术指标中犯规次数、失误次数指标为反向指标,其它均为正向指标。设:-参加决赛的队伍的编号=1、2、3、4;设:-各代表队的17项技术指标
36、=1、2、3.16、17;设:-各代表队的球员=4、5、6.16;设:-第代表队第 项的指标总数;设:-选取的各项指标的参考值;设:-各项指标的个体指数。通过假设可知:犯规次数为第14项指标,失误次数为第15项技术指标。因此我们建设各项技术指标的个体指数模型为:当14、15时:1当=14、15时:2在求解出各项技术指标的个体指数后,我们可以通过和运算求解出参加决赛的四支代表队的综合指数。设:-参加决赛的四支队伍的综合指标。各代表队的综合指标为:=1、2、3.16、17在求得了各个学院的综合指标后,我们就可以对综合指标进展排名,从而预测出最有可能夺冠的队伍。2将这12支代表队的名次进展排序在这1
37、2支队伍中共分为两局部,一局部是参加决赛的4支队伍,其余的是没有进入决赛的队伍。因为通过综合指数评判方法我们可以得到参加决赛的四支队伍的综合指标,从而预测决赛的6场比赛的结果,排列出前四名。但是因为其余未进入决赛的队伍已经没有比赛了,所以本文将积分值作为排名的依据。因为存在积分一样的队伍,我们求解出积分一样的队伍比分率之和,即自己的比分除以对手比分然后在求和。痛过比分率的大小来判定名次。本文在这里设比分一样的队伍的总积分率为:二、模型的建设通过上面的对问题四的分析,我们可以得到四支队伍的综合指数。我们统一数据的时候采用的是正指标,所以在求解得出的综合指数越大的队伍综合实力越强,而综合实力最强的
38、队伍就最有可能夺得冠军。通过以上分析我们可以建设一个求解夺冠热门队伍的数学模型。设:-参加决赛的队伍的编号=1、2、3、4;设:-参加决赛的四支队伍的综合指标。设:-预测的最容易夺冠的队伍。约束条件:=1、2、3、4当=14、15时:当14、15时:三、模型的求解预测哪支队伍能够夺冠1求解过程:1、根据积分和比分率之和判断出进入决赛的四支队伍。2、将各项指标统一,通过取倒数将负指标变成正指标。3、通过综合指数法求解出各项技术指标指标的个体指数。4、将这些个体指数求和,根据综合指数排名,排第一的那么为热门夺冠队伍。2通过上面的求解方法和步骤,通过Excle求解,我们最终得到参加决赛的队伍为:信电
39、学院 5分 数学学院5分A组: B组:机电学院3分化学学院3分综合指数排名及名次预测如下:冠军:数学学院 综合指数:11.1588亚军:信电学院 综合指数:10.5445季军:机电学院 综合指数:10.2168第四名:化学学院综合指数:10.2000将这12支代表队的名次进展排序因为上面已经求解出前四名的预测排名,因此根据积分的大小我们将剩下的队伍进展排名,比分一样的队伍我们求解出其对应的比分率,根据比分率的和来排列名次。最后得到的排名如下表:预测排名根据比赛成绩排名名次冠军亚军季军456789101112学院数学信电机电化学管理物理测绘生物能源计算机资源地理积分533210平均综合指数各场比
40、赛的比分率之和11.158810.554510.216810.20002.60832.56632.48682.46382.45262.4148针对问题五一、问题的分析1、通过对问题的仔细阅读,本文需要解决的问题是:对每支代表队给出几点技术方面的改进建议,提升其实力。2、问题的分析和解决方案,在每支队伍中都有17项技术指标,因此提高各队比较差的技术指标那么可以帮助其提高水平。因此本文将12支代表队的各项指标求解出平均值,获得了这17项指标的平均水平。判断各队的各指标与平均指标的大小就可以判断出哪些队伍的哪些技术指标低于平均水平,需要加强。另外,本文将参考网上篮球比赛分析,综合考虑,给出建议。二、
41、问题的解决1、根据上面对问题的分析。我们对各项指标进展求平均值,然后选出正指标在平均值之下的队伍以及负指标在平均值以上的队伍,这些队伍在这些指标上就需要加强。以三分命中率为例:学院数学物理化学生物计算机资源3分命中率%29.97631.0542.29228.18237.31240.234学院地质信电机电管理能源测绘3分命中率%37.46245.03439.63627.4638.5236.124平均3分命中率为:36.11 %我们作图分析:通过柱形图观察,我们可以判定需要提高3分命中率的的代表队有:数学学院、物理学院、生物学院、管理学院 。由此方法我们可以得到其余17项指标所需要提高的学院见附录
42、在求解出17项指标对应应该提高的学院后,本文将这些数据进展整合,并且查阅大量资料后,最终得到了对各个代表队在技术上的相关建议如下:A组学院针对数学学院,本文的建议是:提高2分球、三分球投篮数量,加强三分球命中率,增加进攻、助攻次数。针对物理学院,本文的建议是:增加3分球、罚球、盖帽次数,并提高命中率;将强防守、并减少犯规次数。针对化学学院,本文的建议是:增加2分球、罚球次数,并提高命中率;加强进攻,并减少犯规次数。针对生物学院,本文的建议是:技术、罚球、助攻、抢断、盖帽,减少失误。针对计算机学院,本文的建议是:增加2分球、罚球、盖帽次数,并提高命中率;加强助攻,并减少犯规次数。针对资源学院,本
43、文的建议是:增加2分球、3分球、罚球次数,并提高命中率;加强助攻、抢断、盖帽、篮板等技术,并减少犯规次数。B组学院针对地质学院,本文的建议是:增加2分球、罚球次数,并提高命中率,并提高 篮板、助攻、抢断等技术。针对信电学学院,本文的建议是:提高2分投篮数和2分命中率,减少犯规和失误次数。针对机电学学院,本文的建议是:增加2分命中数、3分投篮数、罚球数,加强进攻、助攻技术,并减少犯规和失误次数。针对管理学院,本文的建议是:增加3分球次数,提高3分球及罚球命中率,减少失误次数等。针对能源学院,本文的建议是:增加 2分球、罚球数,并提高2分命中率;加强进攻、防守、抢断、盖帽等技术。针对测绘学院,本文
44、的建议是:加强3分球数,并提高2分球、三分球、罚球命中率;加强篮板、助攻、盖帽等技术,减少犯规次数等模型的评价模型的优点在本文中,我们引入了灰色系统、综合指数法等比较好的综合评价方法,模型构建和求解中存在了不少的优点,如下:1针对问题一、问题二,本文引入了灰色系统这种综合评价模型。切合题目所给的数据,采用关联度分析方法是根据因素之间开展趋势的相似性和相异程度来衡量因素间关联程度的。在本文中能很好的提醒各项技术指标与总成绩之间的动态关联度。题目给出了各种不同量纲的技术指标数据,不能直接评判起相互关系。关联度分析法是以开展趋势为立足点的,所以他对样本量的多少没有过分要求。灰色系统理论认为这些数据并
45、不是不可捉摸的,为了处理这些数据可以把随机量看成是一定范围内变化的灰色量,按适当的方法对原始数据进展处理,将灰色数变换为生成数,从生成数进而转化的到规律性很强的生成函数。最后充分利用手头已有的数据和信息,求解出同一系统的指标的特定功能和奉献大小。由于灰色系统的这些优点是的非常适合此题的建模。他很好的解决了本体所给出的数据不充分和不典型性。2针对问题三,本文的假设很合理。关键场次分为了三类,囊括了时机全部的情况,采用逻辑推理的方法,求解出了结果。这种方法在各种比赛中普遍适用,具有广泛性。3针对问题四,本文引入了综合指数法这种综合评价模型。将各平均个体指标求和,得到各个参赛队伍的综合指标,反映了各
46、个代表队的综合实力。采用比分率的方法可以有效的排列积分一样的队伍的名次。针对进入决赛的队伍,因为是预测冠军的得主,而且各小组之间的代表队并没有比赛过。因此,不能通过积分来判定强弱,采用综合评价的方法就可以有效的、准确确实定实力的强弱,从而增大预测成功的概率。5针对问题五,本文采用了将各项指标和平均指标相比的方法,得到各个学院比较薄弱的技术工程。将各项指标在12支队伍中相互比较,就能寻找到各队之间的差距,从而能够有效的提出合理的建议。模型的缺点在建模过程中,本文提出了一些假设,并且做了一些简化处理。带有一定的主观性和理想性,因此也存在一些缺点。1、数据处理方面:因为数据量大,为了简化运算。本文并
47、没有对各项数据进展具体的分析,没有考虑奇异数据的情况。2、在问题假设方面,有一些假设是建设在理想根基上的,而在现实情况下,可能会出现各种其他因素的影响。3、在模型构架方面,做的不是很完美,但是求解过程都是经过严密验证的,在这种情况下模型求解做到了最好。模型的优化与推广针对上面的分析,考虑到模型可能存在的缺点。在此,本文对局部模型进展优化和推广。一、模型的优化1、考虑时间安排在比赛中影响1在问题一中,本文假设队员上场时间不做为技术指标,并且将一个队伍的技术指标作为一个整体来建设模型。因为上场时间最多的是最优秀的一些球员,因此相应求得的关联度反映的是上场时间最多的哪些球员的各项指标与成绩之间的关系
48、。因此,本文将模型进展优化,考虑时间在各项技术指标中占的权重,然后运用灰色系统建设综合评价模型。:每场比赛的时间数确定为200分钟,任选择一支队伍设为 T 代队表设:-和T代表队比赛的其他队伍的编号=1、2、3、4、5;设:-T代表队的17项技术指标=1、2、3.16、17;设:-T代表队的球员=4、5、6.16;设: -为分辨系数,01;设:-号球员在第上场的时间数。设:-T代表队和第 队比赛时球员第 项的指标数;设:-修正后的T代表队和第 个队比赛时第 项的指标总数。设:-修正后的T代表队标准化处理后和第队比赛时 的指标总数。设:-修正后的T代表队选取的第 项的指标总数参考数据。设: -修
49、正后的T代表队与第 代表队比赛时第 项指标与总成绩的关联度。根据前面的分析,和第 个队比赛时第 项的修正后指标总数为:修正后对应的标准化指标为:修正后对应差数列:修正后的最大偏差:修正后的最小偏差:最终建设的模型为:以计算机学院为例,通过Excle求解,我们得到了修正后的各项指标与成绩的关联度,如下表:修正后计算机学院各技术指标与总成绩的关联度2分中2分投2分 %3分中3分投3分 %罚中罚次罚 %关联度0.8865 0.7521 0.8120 0.8552 0.8219 0.7083 0.7821 0.6434 0.8325 进攻防守合计助攻犯规失误抢断盖帽关联度0.6008 0.6547 0
50、.7247 0.7405 0.7547 0.7392 0.7475 0.6553 经过检验,我们发现个指标与总成绩之间的关联度更加的准确,采用如上方法推广到其他11代表队求解出修正后的关联度。详细答案见附表2、考虑权重对问题四的影响。在问题四的综合评价模型中,如果可以引入权重比照赛结果的影响,那么可以为排名提供更有效的依据。对于具体的求解过程,本文不再作过多讨论。二、模型的推广1、运用的灰色系统的综合评价模型,可以切合题目所给的数据,采用关联度分析方法是根据因素之间开展趋势的相似性和相异程度来衡量因素间关联程度的。因此可以推广到各种关系不大的指标以及不同量纲的指标的评价。例如:推广到足球比赛等
51、其他各类比赛、房屋建筑指标评定等。综合指数法的综合评价模型可以推广到其他行业进展综合评价排名。例如:职工的业绩排名、医院的各月份的综合排名等。2、引入的比分率的概念,可以推广到其他各类比赛、评比上面。在日常生活中和比赛中经常遇到比分或者成绩等一样的情况,在这种情况下考虑比分率的大小就可以有效减少一样名次的出现和排名困难的囧地。3、按照与平均水平的比较求解的方法可以推广到其他方面评比方面,利用图表可以直观的表现出哪些指标低于平均水平,从而可以判定哪些指标需要加强。这种方法适用于学习、工作和各种竞赛中。参考文献【1】运筹学胡知能主编科学出版社【2】灰理论根基邓聚龙主编华中科技大学出版社【3】数学建
52、模简明教材 张兴永编著中国矿业大学出版社【4】数学分析第三版华东师大数学系编高等教育出版社【5】高等数学第五版 同济大学应用数学系编著高等教育出版社【6】网站: HYPERLINK :/wenku.baidu /view/108b8c4533687e21af45a9c2.html :/wenku.baidu /view/108b8c4533687e21af45a9c2.html 百度文库 ?灰色关联度分析?附录一:各问题的详细答案各学院各项指标与总成绩的关联度A组学院数学物理化学生物计算机资源2分中0.74180.92970.94590.78020.81660.88652分投0.78910.8
53、5760.90640.78340.88200.75212分%0.83380.95540.96130.82570.90750.81203分中0.61300.83160.92030.64530.75010.79403分投0.70970.71190.90230.73420.75960.74913分%0.68510.83520.90450.68100.88570.8075罚中0.77660.82550.76330.79910.79190.5523罚次0.81360.77740.73630.76740.68440.6128罚%0.86610.75160.90310.86880.81460.8332进攻0
54、.67470.68590.69870.69830.68280.6243防守0.64390.80880.93400.93680.67050.8821合计0.68200.78040.91620.87250.71380.7821助攻0.84140.87720.83240.79460.74050.6434犯规0.79010.88650.85920.74370.75470.8325失误0.82410.69770.71940.54200.73920.6855抢断0.78790.54620.89570.70540.69640.6200盖帽0.61480.78040.79520.65740.66370.532
55、0B组学院地质信电机电管理能源测绘2分中0.89040.76380.95230.85130.92470.81632分投0.72490.81690.92760.93640.89590.79352分%0.89600.86700.82650.85280.90910.77533分中0.86800.79230.85730.70830.67670.70903分投0.84360.85520.84210.74750.69500.59283分%0.88500.82190.83440.65530.87990.8031罚中0.59130.70830.78930.87190.67510.6194罚次0.54040.7
56、0250.71070.79680.67470.6497罚%0.87350.91710.93840.88050.81810.8398进攻0.77120.76530.76740.73100.78920.6651防守0.86250.65750.88620.79890.76900.7900合计0.87920.73480.87680.80790.78610.7423助攻0.82440.79260.82820.76260.65500.7808犯规0.80910.79780.76200.72940.77620.6047失误0.84310.69760.80650.77630.76170.7247抢断0.874
57、00.73260.80460.80180.66810.7671盖帽0.79450.76880.77020.71090.58310.55302、各学院代表队各项指标的排名A组学院数学学院各技术指标排名123456789技术指标罚 %助攻2分 %失误罚次犯规2分投抢断罚中1011121314151617技术指标2分中3分投3分 %合计进攻防守盖帽3分中物理学院各技术指标排名123456789技术指标2分 %2分中犯规助攻2分投3分 %3分中罚中防守1010111213141516技术指标合计盖帽罚次罚 %3分投失误进攻抢断化学学院各技术指标排名123456789技术指标2分 %2分中防守3分中合计
58、2分投3分 %罚 %3分投1011121314151617技术指标抢断犯规助攻盖帽罚中罚次失误进攻生物学院各技术指标排名123456789技术指标防守合计罚 %2分 %罚中助攻2分投2分中罚次1011121314151617技术指标犯规3分投抢断进攻3分 %盖帽3分中失误计算机学院各技术指标排名123456789技术指标2分 %3分 %2分投2分中罚 %罚中3分投犯规3分中1011121314151617技术指标助攻失误合计抢断罚次进攻防守盖帽资源学院各技术指标排名123456789技术指标2分中防守罚 %犯规2分 %3分 %3分中合计2分投1011121314151617技术指标3分投失误助
59、攻进攻抢断罚次罚中盖帽B组学院地质学院各技术指标排名123456789技术指标2分 %2分中3分 %合计抢断罚 %3分中防守3分投1011121314151617技术指标失误助攻犯规盖帽进攻2分投罚中罚次信电学院各技术指标排名123456789技术指标罚 %2分 %3分投3分 %2分投犯规助攻3分中盖帽1011121314151617技术指标进攻2分中合计抢断罚中罚次失误防守机电学院各技术指标排名123456789技术指标2分中罚 %2分投防守合计3分中3分投3分 %助攻1011121314151617技术指标2分 %失误抢断罚中盖帽进攻犯规罚次管理学院各技术指标排名123456789技术指标
60、2分投罚 %罚中2分 %2分中合计抢断防守罚次1011121314151617技术指标失误助攻3分投进攻犯规盖帽3分中3分 %能源学院各技术指标排名123456789技术指标2分中2分 %2分投3分 %罚 %进攻合计犯规防守1011121314151617技术指标失误3分投3分中罚中罚次抢断助攻盖帽测绘学院各技术指标排名123456789技术指标罚 %2分中3分 %2分投防守助攻2分 %抢断合计1011121314151617技术指标失误3分中进攻罚次罚中犯规3分投盖帽各学院代表队的关键比赛场次A组: 化学学院 关键比赛场次: 化学学院 VS 生物学院数学学院 关键比赛场次: 数学学院 VS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度公寓装修与智能家居集成合同2篇
- 大学生职业生涯规划大赛
- 全国山西经济版小学信息技术第二册第一单元活动10《图文并茂练排版》说课稿
- 山东省泰安市新泰市2024-2025学年四年级上学期期末质量检测数学试题参考答案
- 8000吨二甲基二硫醚生产项目可行性研究报告模板-立项备案
- 湖北省十堰市城区2024-2025学年四年级上学期期末数学试题参考答案
- 浙江省杭州市(2024年-2025年小学六年级语文)部编版能力评测(下学期)试卷及答案
- 2024年事业单位教师招聘言语理解与表达题库附答案
- Unit2 Special Days Lesson 3(说课稿)-2023-2024学年人教新起点版英语五年级下册
- 贵州盛华职业学院《近代建筑引论》2023-2024学年第一学期期末试卷
- 高中新教材化学必修一课后习题答案(人教版)
- GB/T 19326-2022锻制支管座
- GB/T 9740-2008化学试剂蒸发残渣测定通用方法
- GB/T 7424.1-1998光缆第1部分:总规范
- 拘留所教育课件02
- 护士事业单位工作人员年度考核登记表
- 儿童营养性疾病管理登记表格模板及专案表格模板
- 天津市新版就业、劳动合同登记名册
- 数学分析知识点的总结
- 2023年重症医学科护理工作计划
- 年会抽奖券可编辑模板
评论
0/150
提交评论