基于极坐标的牛顿-拉夫逊法潮流计算毕业设计_第1页
基于极坐标的牛顿-拉夫逊法潮流计算毕业设计_第2页
基于极坐标的牛顿-拉夫逊法潮流计算毕业设计_第3页
基于极坐标的牛顿-拉夫逊法潮流计算毕业设计_第4页
基于极坐标的牛顿-拉夫逊法潮流计算毕业设计_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文) 毕业设计基于极坐标的牛顿拉夫逊法潮流计算摘要潮流计算是电力系统最基本的计算功能,其基本思想是根据电力网络上某些节点的已知量求解未知量,潮流计算在电力系统中有着独特的作用。它不仅能确保电力网络能够正常的运行工作、提供较高质量的电能,还能在以后的电力系统扩建中各种计算提供必要的依据。矚慫润厲钐瘗睞枥庑赖。计算潮流分布的方法很多,本设计主要用的是基于极坐标的牛顿拉夫逊法。根据电力系统网络的基本知识,构建出能代表电力系统系统网络的数学模型,然后用牛顿拉夫逊法反复计算出各个接点的待求量,直到各个节点的待求量满足电力系统的要求。我们可以画出计

2、算框图,用MATLAB编写出程序,来代替传统的手算算法。复杂电力系统是一个包括大量母线、支路的庞大系统。对这样的系统进行潮流分析时,采用人工计算的方法已经不再适用。计算机计算已逐渐成为分析复杂系统潮流分布的主要方法。本设计中还用了一个五节点的电力系统网络来验证本设计在实际运行中的优越性。聞創沟燴鐺險爱氇谴净。关键词:牛顿拉夫逊法,复杂电力系统,潮流计算ThemethodofNewton-RaphsonbasedonpolarABSTRACTPowersystemloadflowcalculationisthemostbasiccomputingfunctions,thebasicideaisb

3、asedonsomeoftheelectricitynetworknodestosolvetheunknownquantityofknownvolume,Inpowersystem,powerflow,whichcanensurethatelectricalnetcanworkwellandgivethehighqualitypower,butalsolaterprovidethenecessarydatasintheenlargementofthepowersystem.hasspecialfunction.残骛楼諍锩瀨濟溆塹籟。Therearelotsofmethodsaboutpower

4、flow.WemainlyusethemethodofNewton-Raphsonbasedonpolarinmydesign.Accordingtothebasicknowledgeoftheelectricalnetwork,weestablishedthemathematicsmodelwhichcanpresentsthepowersystem,thencomputedagainandagainunknownmembersoftheeachbuswiththemethodofNewton-RaphSonuntiltheunknownnumbersmeetthedemandofthepo

5、wersystem.WecanwritedowntheblockdiagramandwritetheorderwiththeMatlabinplaceofthetraditionalmethods.Complexpowersystemisalargesystemwhichinvolveslotsofbusbarsandbranches.Wealsochoseafive-buspowersystemfortestingtheadvantagesintherelity.酽锕极額閉镇桧猪訣锥。KEYWORDS:Newton-Raphson,powersystem,powerflow目录TOC o 1

6、-5 h z前言1 HYPERLINK l bookmark6 o Current Document 第一章电力系统潮流计算的基本知识21.1潮流计算的定义及目的2厦1.2潮流计算方法的发展及前景错误!未定义书签。第二章潮流计算的节点6鹅娅尽損鹌惨歷茏鴛賴节点的分类6籟丛妈羥为贍偾蛏练淨2.2潮流问题变量的约束条件8預頌圣鉉儐歲龈讶骅籴第三章电力网络的数学模型9渗釤呛俨匀谔鳖调硯錦3.1节点导纳矩阵的形成10饶誅卧泻噦圣骋贶頂廡3.2节点导纳矩阵的修改10擁締凤袜备訊顎轮烂蔷TOC o 1-5 h z HYPERLINK l bookmark36 o Current Document 第四章潮

7、流计算的原理12牛顿拉夫逊法12 HYPERLINK l bookmark74 o Current Document 第五章计算实1算例5.2节点导纳的形成5.3计算结果结论TOC o 1-5 h z谢辞22参考文献23附录24计算程序25外文资料翻译41基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文)基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文) -LX.1前言潮流计算是电力系统中应用最广泛和最重要的一种电气计算。其任务是根据给定的网络结构及运行条件,求出整个网络的运行状态,其中个母线的电压、网络中的功率分布以及整个系统的功率损耗等。潮

8、流计算可以分为简单网络的潮流计算和复杂系统的潮流计算。简单网络的潮流计算,比如:辐射型网络的潮流计算和闭式网络的潮流计算。它们是复杂电力系统潮流计算的基础。在复杂的电力系统潮流计算中需要对电力系统网络进行必要的计算,用来获得必要的数据。潮流计算在电力系统规划设计及运行方式分析的离线及在线计算中都发挥着重要的作用。在这个设计中,我们选折了MATLAB开发潮流计算程序,是因为潮流计算在数学上一般属于多元非线性代数方程组的求解,必须采用迭代计算其中涉及大量的向量和矩阵运算,使用传统的编程语言将十分麻烦。而MATLAB以复数矩阵为基本运算单元,且内置众多高精度、高可靠性矩阵、数组运算函数、数值计算方法

9、,可大大提高编程的效率。贓熱俣阃歲匱阊邺镓騷。第一章电力系统潮流计算的基本知识潮流计算的定义及目的电力系统潮流计算分布计算,是指电力系统在某一稳定状态的正常运行方式下,电力网络各节点的电压和功率分布的计算。它的主要目的:坛检查电力系统各元件是否过负荷。检查电力系统各节点的电压是否满足电压质量的要求。根据对各种运行方式的潮流分布计算,可以帮助我们正确地选择系统的接线方式,合理调整负荷,以保证电力系统安全、可靠地的运行,向用户供给高质量的电能。蜡變黲癟報伥铉锚鈰赘。根据功率分布,可以选折电力系统的电气设备和导线截面积,可以为电力系统继电保护整定计算提供必要的数据等。買鲷鴯譖昙膚遙闫撷凄。为电力系统

10、的规划和扩建提供依据。为调整计算、经济运行计算、短路计算和稳定计算提供必要的数据。在计算机技术还未发展以前,电力系统的潮流分布计算多采用“手工”近似计算,即按照电路的基本关系,用手工来推算各节点的功率和电压。随着电子计算机技术的进步,电力系统潮流分布的计算几乎已普遍采用计算机来进行,通过求解描述电力系统状态的数学模型,而得到较精确的解。潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压、网络中的功率分布以及功率损耗等。驅踬髏彦浃绥譎饴憂锦。潮流计算方法的发展及前景在用数字计算机求解电力系统潮流问题的开始阶段,人们普遍采用以节点导纳矩阵为基

11、础的高斯-赛德尔迭代法。这个方法的原理比较简单,要求的数字计算机的内存量也比较小,适应当时的电子数字计算机制作水平和电力系统理论水平,于是电力系统计算人员转向以阻抗矩阵为主的逐次代入法。猫虿驢绘燈鮒诛髅貺庑。20世纪60年代初,数字计算机已经发展到第二代,计算机的内存和计算速度发生了很大的飞跃,从而为高斯-赛德尔迭代法的采用创造了条件。阻抗矩阵是满矩阵,高斯-赛德尔迭代法要求计算机储存表征系统接线和参数的阻抗矩阵。这就需要较大的内存量。而且阻抗法每迭代一次都要求顺次取阻抗矩阵中的每一个元素进行计算,因此,每次迭代的计算量很大。锹籁饗迳琐筆襖鸥娅薔。高斯-赛德尔迭代法改善了电力系统潮流计算问题的

12、收敛性,解决了导纳法无法解决的一些系统的潮流计算,在当时获得了广泛的应用,曾为我国电力系统设计、运行和研究做出了很大的贡献。但是,高斯-赛德尔迭代法的主要缺点就是占用计算机的内存很大,每次迭代的计算量很大。当系统不断扩大时,这些缺点就更加突出。为了克服阻抗法在内存和速度方面的缺点,后来发展了以阻抗矩阵为基础的分块阻抗法。这个方法把一个大系统分割为几个小的地区系统,在计算机内只需存储各个地区系统的阻抗矩阵及它们之间的联络线的阻抗,这样不仅大幅度的节省了内存容量,同时也提高了节省速度。構氽頑黉碩饨荠龈话骛。克服高斯-赛德尔迭代法缺点的另一途径是采用牛顿-拉夫逊法。牛顿-拉夫逊法是数学中求解非线性方

13、程式的典型方法,有较好的收敛性。解决电力系统潮流计算问题是以导纳矩阵为基础的,因此,只要在迭代过程中尽可能保持方程式系数矩阵的稀疏性,就可以大大提高牛顿潮流程序的计算效率。自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿-拉夫逊法在收敛性、内存要求、计算速度方面都超过了阻抗法,成为直到目前仍被广泛采用的方法。輒峄陽檉簖疖網儂號泶。在牛顿-拉夫逊法的基础上,根据电力系统的特点,抓住主要矛盾,对纯数学的牛顿法进行了改造,得到了P-Q分解法。P-Q分解法在计算速度方面有显著的提高,迅速得到了推广。尧侧閆繭絳闕绚勵蜆贅。牛顿-拉夫逊法的特点是将非线性方程线性化。20世纪70年代后期,有人提出采用

14、更精确的模型,即将泰勒级数的高阶项也包括进来,希望以此提高算法的性能,这便产生了保留非线性的潮流算法。另外,为了解决基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文)基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文) # 病态潮流计算,出现了将潮流计算表示为一个无约束非线性规划问题的模型,即非线性规划潮流算法。识饒鎂錕缢灩筧嚌俨淒。近20多年来,潮流算法的研究仍然非常活跃,但是大多数研究都是围绕改进牛顿法和P-Q分解法进行的。此外,随着人工智能理论的发展,遗传算法、人工神经网络、模糊算法也逐渐被引入潮流计算。但是,到目前为止这些新的模型和算法还不能取代牛顿-拉夫逊法和P

15、-Q分解法的地位由于电力系统规模的不断扩大,对计算速度的要求不断提高,计算机的并行计算技术也将在潮流计算中得到广泛的应用,成为重要的研究领域凍鈹基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文)基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文)基于极坐标的牛顿-拉夫逊法潮流计算洛阳理工学院毕业设计(论文) 第2章潮流计算的节点2.1节点的分类节点电压方程是潮流计算的基础方程式。在电气网络理论中,一般是给出电压源或电流源,为求得网络内电流和电压的分布,只要直接求解网络方程就可以了。但是,在潮流计算中,在网络的运行状态求出以前,无论是电源的电势值,还是节点的注入的电流,都是

16、无法准确给定的。恥諤銪灭萦欢煬鞏鹜錦。图2-2表示某个三节点的简单电力系统及其等值电路,其网络方程为厶=YU1+YU2+YU3TOC o 1-5 h z111122133I2=YU1+YU2+YU3211222233厶=YU1+YU2+YU3311322333即Ii二YU1+YU2+YU3(i=i,2,3)(2-1)ii11i22i33因为s二ui*,所以节点电流用功率和电压可以表示为S(P-P)_j(Q-Q)(2-2)ILGiLDiGiLDi厂U一Uii将式(2-2)带入式(2-1)可得(P一P)_j(Q-Q)GiLDiGiLDiu.iYU1+YU2+YU3i11i22i33这是一组复数方程

17、式,如果把实部和虚部分开,便得到6个实数方程。但是每个节点都有6个变量,即发电机发出的有功功率和无功功率、负荷需要的有功功率和无功功率,以及节点电压的幅值和相位(或对应与某一个参考直角坐标的实部和虚部)。对于n个节点的网络,可以写2n个方程,但是确有6n个变量。因此,对于每个节点,必须给定这6个变量中的4个,使待求量的数目同方程的数目相等,才能对方程求解。鯊腎鑰诎褳鉀沩懼統庫。通常把负荷功率作已知量,并把节点功率p二p-p和Q=Q-QiGiLDiiGiLDi引入网络方程。这样n个节点的电力系统潮流方程的一般形式可以写为p-jQgnli=乙Yu(i1,2,.n)UijUj=1j或P+jQ=UgU

18、U(2-3)11j=1ijj将上述方程的实部和虚部分开,对每一个节点可得2个实数方程,但是变量仍还有4个,即P、Q、U、8。还要给定其中的2个,将剩下的2个作为待求变量,方程组才可以求解。根据电力系统的实际运行条件,按给定变量的不同,一般将节点分为以下三种类型。硕癘鄴颃诌攆檸攜驤蔹。PQ节点这类节点的有功功率P和无功功率Q是给定的。节点电压(U,8)是待求量。通常变电所都是在这一类型的节点,由于没有发电机设备,故发电机功率为零。若系统中某些发电厂送出的功率在一定时间内为固定时,则该发电厂母线可作为PQ节点。可见电力系统的绝大多数节点属于这一类型。阌擻輳嬪諫迁择楨秘騖。PU节点这类节点的有功功率

19、P和电压幅值U是给定的,节点的无功功率Q和电压的相位8是待求量。这类节点必须有足够的可调无功容量,用以维持给定的电压幅值,因而又称之为电压控制节点。一般是选折有一定无功储备的发电厂和具有可调无功电源设备的变电所作为PU节点。在电力系统只能中,这一类的数目很少。氬嚕躑竄贸恳彈瀘颔澩。3平衡节点在潮流分布算出以前,网络中的功率损失是未知的,因此,网络中至少有一个节点的有功功律P是不能给定的,这个节点承担了系统有功功率的平衡,故称之为平衡节点。另外,必须选定一个节点,指定其电压相位为零,作为计算各节点电压相位的参考,这个节点称为基准节点。基准节点的电压幅值是给定的。(亦称为松弛节点、摇摆节点)。电力

20、系统中平衡节点一般只有一个,它的电压幅值和相位是给定的,而其有功功率和无功功率是待求量。釷鹆資贏車贖孙滅獅赘。一般选折主调频发电厂为平衡节点比较合适。但在进行潮流计算时也可以按照惯例的原则来选折,例如,为了提高导纳矩阵法潮流程序收敛性,也可以选折出线较多的发电厂母线做为平衡节点。怂阐譜鯪迳導嘯畫長凉。根据以上所述可以看到,尽管网络方程是线性方程但是由于在定解条件中不能给定节点电流,只能给出节点功率,这就使潮流方程变为非线性方程了。由于平衡节点的电压已给定,只需要计算其余(n1)个节点的电压。所以方程式的数目实际上只有2(n1)个。谚辞調担鈧谄动禪泻類。潮流问题变量的约束条件通过求解方程得到了全

21、部节点电压以后,就可以进一步计算各类节点的功率以及网络中功率的分布。这些计算结果代表了潮流方程在数学上的一组解答。但这组解答所反映的系统运行状态,在工程上是否具有实际意义还需要进行检验,因为电力系统运行必须满足一定技术上和经济上的要求。这些要求构成了潮流问题中某些变量的约束条件,通常的约束条件有:嘰觐詿缧铴嗫偽純铪锩。所有节点电压必须满足UUU(i=1,2,n)iminiimax这个条件是说各节点电压的幅值应限制在一定的范围之内。从保证电能质量和供电安全的要求来看,电力系统的所有电气设备都必须运行在额定电压附近。对于平衡节点的PU节点,其电压幅值必须按上述条件给定。因此,这一约束条件主要是对P

22、Q节点而言。熒绐譏钲鏌觶鷹緇機库。所有电源节点的有功功率和无功功率必须满足的条件ppp和QQQGiminGiGimaxGiminGiGimaxPQ节点的有功功率和无功功率以及PU节点的有功功率,在给定时就必须满足上式条件。因此对平衡节点的P和Q以及PU节点Q应按上述条件进行检验。鶼渍螻偉阅劍鲰腎邏蘞。某些节点之间电压的相位差应满足p_8|8_8ijijmax为了保证系统运行的稳定性,要求某些输电线路两端电压相位差不超过一定的数值。这一约束的主要意义就在于此。如果计算出来的结果不满足这些约束条件,必须修改某些变量的给定值,甚至修改系统的运行方式。第3章电力网络的数学模型电力网络的数学模型指的是将

23、网络有关参数和变量及其相互关系归纳起来所组成的、可以反映网络性能的数学方程式组。也可以说是对电力系统的运行状态、变量和网络参数在电力系统潮流分布的计算中,广泛采用的是节点电压方程。3-1)在电工原理课中,已讲过用节点导纳矩阵表示的节点电压方程为r=yun_|Ln对于n个节点的网络,它可以展开为rYYY11Y122122Y1n2nU1U2(3-2)YYn1n2n3式(3-1)中的是节点注入电流的列向量。是节点电压的列向量。网络中有接地支路时,通常以大地为参考点,节点电压就是各节点的对地电压。3.1节点导纳矩阵的形成节点导纳矩阵的对角线元素称为自导纳。由式(3-2)可见,自导纳Y等于ii在节点i施

24、加单位电压U,其它节点全部接地时,经过点i向网络中注入的电流,亦等于与节点相连支路的导纳之和。其表示式为Y-U-1.一工I一工y(U=1,U-0,i丰j)(3-3)iiUiijijijijjii节点导纳矩阵的非对角线元素Y(i=1、2、n,j=l、2、n但i丰j)称为互导纳。由式(33)可见,互导纳Y在数值上就等于节点i施加单位电压,ij其它节点全部接地时,经节点j注入网络的电流。亦等于节点i,j之间所连支路元件导纳的负值,其表示式为挤貼綬电麥结鈺贖哓类。Y=U=1广y(U=i,u=o,i主j)ijUjiiji(3-4)依据互导纳的物理意义可知Y=-y,即Y=Y;特别地,当节点i、ijijij

25、jij之间无直接支路相连时,Y=Y=0。在复杂电力网中,这中情况较多,从ijji而使矩阵中出现了大量的零元素、节点导纳矩阵称为稀疏矩阵。一般来说,即对角线元素的绝对值大于非对角线元素的绝对值,使节点导纳矩iiij阵称为具有对角线优势的矩阵。因此节点导纳矩阵是一个对称、稀疏且具有对角线优势的方阵。3.2节点导纳矩阵的修改在电力系统中,接线方式或运行状态等均会发生变化,从而使网络接线改变。比如一台变压器支路的投入或切除,均会使与之相连的节点的自导纳或互导纳发生变化,而网络中其它部分结构并没有改变,因此不必从新形成节点导纳矩阵,而只需对原有的矩阵作必要的修改就可以了。现在几种典型的接线变化说明具体的

26、修改方法。塤礙籟馐决穩賽釙冊庫。(1)从原有网络的节点i引出一条导纳为Y的支路(见图31,(a),jij为新增加的节点,由于新增加了一个节点,所以节点导纳矩阵增加一阶,矩阵作如下修改:裊樣祕廬廂颤谚鍘羋蔺。yij1)原有节点i的自导纳Y的增量AY二iiii2)新增节点j的自导纳Y=y;ijij3)新增的非对角元素Y=Y=一y;其它新增的非对角元均为零。(2)ijjiij在原有网络的节点i与j之间增加一条导纳为y的支路(见图31,(b),则ij与i、j有关的元素应作如下修改:仓嫗盤紲嘱珑詁鍬齊驁。1)节点i、j的自导纳增量AY二AY=y;iijjij2)节点i、j的互导纳增量AY二AY二一y。i

27、jjiij(3)在网络的原有节点i、j之间切除一条导纳为y的支路,(见图31,(c),ij其相当在i、j之间增加一条导纳为一y的支路,因此与i、j有关的元素应作ij以下修改:绽萬璉轆娛閬蛏鬮绾瀧。1)节点i、j的自导纳增量AY二AY二一y;iijjij2)节点i、j之间的互导纳增量AY二AY二y;ijjiij(4)原有网络节点i、j之间的导纳由y.变成y.见图31,(d),相当于ijij在节点i、j之间切除一条导纳为y的支路,在增加一条导纳为yij的支路ijij则与i、j有关的元素应作如下修改:骁顾燁鶚巯瀆蕪領鲡赙。1)节点i、j的自导纳增量ay二AY二yij-y.;iijjijij2)节点i

28、、j的互导纳增量AY=AYijjiyijyij图(3-1)洛阳理工学院毕业设计(论文)洛阳理工学院毕业设计(论文) 第4章潮流计算的原理4.1牛顿拉夫逊法设有单变量非线性方程f(X)=0(4-1)求解此方程时。先给出解的近似值X(0)它与真解的误差为AX(0),则x二X(0)+AX(0)将满足方程,即f(X(0)+AX(0)=0(4-2)将(3-8)式左边的函数在X(0)附近展成泰勒级数,于是便得f(X(0)+AX(0)二f(X(0)+f(X(0)AX(0)+f(X(0)(AX(0)2+2!+f(n)(X(0)(AX(0)nn!(4-3)式中,f(X(0),f(n)(X(0)分别为函数f(X)

29、在X(0)处的一阶导数,.,n阶导数。如果差值AX(0)很小,(3-9)式右端AX(0)的二次及以上阶次的各项均可略去。于是,(3-9)便简化为f(X(0)+AX(0)二f(X(0)+f(X(0)AX(0)=0(4-4)这是对于变量的修正量AX(0)的现行方程式,亦称修正方程式。解此方程可得修正量AX(0)二f(X(0)f(X(0)(4-5)用所求的AX(0)去修正近似解,变得f(X(0)X(1)二X(0)+AX(0)二X(0)-f(X(0)(4-6)AX(0)也只是由于(3-10)是略去高次项的简化式,因此所解出的修正量近似值。修正后的近似解x(1)同真解仍然有误差。但是,这样的迭代计算可以

30、反复进行下去,迭代计算的通式是X(k+i)=X(k)f(x(k)/(x(k)(4-7)迭代过程的收敛判据为(4-8)(4-9)f(X(k)AX(k)2式中e,e为预先给定的小正数。12这种解法的几何意义可以从图31得到说明。函数y=f(x)为图中的曲线。f(x)=0的解相当于曲线与x轴的交点。如果第k次迭代中得到x(k),则过X(k),y(k)=f(X(k)点作一切线,此切线同x轴的交点便确定了下一个近似值x(k+1)。由此可见,牛顿一拉夫逊法实质上就是切线法,是一种逐步线性化的方法。栉缏歐锄棗鈕种鵑瑶锬。应用牛顿法求解多变量非线性方程组(3-1)时,假定已给出各变量的初值X(0),X(0).

31、X(0),令AX(0),AX(0),.AX(0)分别为各12n12n变量的修正量,使其满足方程(3-1)即辔烨棟剛殓攬瑤丽阄应。/(X()+AX(),X()+AX(),X()+AX()=0TOC o 1-5 h z厂11122nn/(X()+AX(),X()+AX(),X()+AX()=(21122nn/(X()+AX(),X()+AX(),X()+AX()=n1122nn(4-1)将上式中的n个多元函数在初始值附近分别展成泰勒级数,并略去含有AX(),AX(),AX()二次及以上阶次的各项,便得12n6ff(X(),XX()+1AX()TOC o 1-5 h z12n6Xo16f1f(X(o

32、),X(o)X(o)+1AX(0)+.+1AX(0)6Xo26Xo+丄IAX(o)+.+丄IAX(o)6Xo26Xo2nKl0AX(0)ilf(X(o),X(o)X(o)+n12n6X6AX(0)016f+冷1AX(0)6Xo26f+.+冶1AX(0)6X0n(4-11)方程式(3-17)也可以写成矩阵形式丁(X(0),X(0),X(0)厂112nf(X(),X(),,X()212n6fI6X06f16fI6X06f26fI6X0n6fI6X0nAX(0)1Ax(0)2(X(o),X(o),.,X(o)n12n6fIn6X016fIn6Xo26fIn6X0nAX(0)n12n(4-12)方程式

33、(3-18)是对于修正量AX(0),AX(0),.,AX(0)的线性方程组,称12为牛顿法的修正方程式.利用高斯消去法或三角分解法可以解出修正量Ax(0),Ax(0),.,Ax(0)。然后对初始近似值进行修正l(4-13)X(1)=X()+Ax()iii如此反复迭代,在进行kl次迭代时,从求解修正方程式洛阳理工学院毕业设计(论文)洛阳理工学院毕业设计(论文)洛阳理工学院毕业设计(论文) #i f(X(k),X(k),X(k)厂112nf(X(k),X(kX(k)212n(X(k),X(k),.,X(k)n12n得到修正量AX(k),AX(k)l2af|JaXk丄IaXk1af|aXkf|aXk

34、22af|aXknaf21aXknAX(k)1AX(k)2af|naxklAx(k)X(k+1)=X(k)+AX(k)iii式(3-20)和(3-21)也可以缩写为F(X(k)=_J(k)AX(k)X(k+1)二X(k)+aX(k)af|naxk2af|naxknAX(k)(4-14),并对各变量进行修正(i=l,2,n)(4-15)(4-l6)(4-17)F(X)是由n个多元函数组成的n维列项量;J是n阶方阵,称为雅可比矩阵,它的第i、afj个元素J二冷是第n个函数f(XijXi1i式中的X和AX分别是由n个变量和修正量组成的n维列向量;,xX,)对第j个变量x的偏导数;2nj上角标(k)表

35、示J阵的每一个元素都在点f(X(k)1X(k)2.,X(k)n)处取值i,迭代过程一直到满足收敛判据if(X(k),X(kX(k)i12nmax(4-l8)maxX(k)(4-l9)为止。和为预先给定的小正数。12将牛顿拉夫逊法用于潮流计算,要求将潮流方程写成形如方程式(3-1)的形式。由于节点电压可以采用不同的坐标系表示,牛顿一拉夫逊法潮流计算也将相应的采用不同的计算公式。胀鏝彈奥秘孫戶孪钇賻图(4-1)牛顿一拉夫逊方法的几何意义洛阳理工学院毕业设计(论文)洛阳理工学院毕业设计(论文) 第5章计算实例5.1算例图1为一五结点系统,各支路参数均为标么值。假定结点1、2、3为PQ节点,结点4为P

36、V节点、结点5为平衡结点,试分别用直角坐标和极坐标牛顿一拉夫逊法计算其潮流。取收敛判据为IAP/W10-5和1人0匕2)|Temporary2NumberOfNode=Temporary1;elseNumberOfNode=Temporary2;end%ThefollowingprogramistoformtheNodalAdmittanceMatrix夹覡闾辁駁档驀迁锬減。%andtheTopologicstructureandBranchParametresare洛阳理工学院毕业设计论文洛阳理工学院毕业设计论文NAM(TopoStructureAndBranchPara(CircleNum

37、ber,2),TopoStru +1/(TopoStructureAndBranchPara(CircleNumber,3)+. arranged视絀镘鸸鲚鐘脑钧欖粝。%I,J,R,X,C/K,andpayattentiontotheinpedenceisintheside偽澀锟攢鴛擋緬铹鈞錠。%NodeIandtheratiooftransformerisinthesideofNodeJ緦徑铫膾龋轿级镗挢廟。forCircleNumber1=1:NumberOfBranchforCircleNumber2=1:NumberOfBranchNAM(CircleNumber1,CircleNum

38、ber2)=0;endendforCircleNumber=1:NumberOfBranchifTopoStructureAndBranchPara(CircleNumber,5)0.85騅憑钶銘侥张礫阵轸蔼。NAM(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPara(CircleNumber,1)=.疠骐錾农剎貯狱颢幗騮。NAM(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPara(CircleNumber,1)+.镞锊

39、过润启婭澗骆讕瀘。1.j*TopoStructureAndBranchPara(CircleNumber,4);NAM(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPara(CircleNumber,2)=.榿贰轲誊壟该槛鲻垲赛。NAM(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPara(CircleNumber,2)+.邁茑赚陉宾呗擷鹪讼凑。1.(TopoStructureAndBranchPara(CircleNumb

40、er,5)人2*(TopoStructureAndBranchPara(CircleNumber,3)+.嵝硖贪塒廩袞悯倉華糲。j*TopoStructureAndBranchPara(CircleNumber,4);NAM(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPara(CircleNumber,2)=.该栎谖碼戆沖巋鳧薩锭。-1.(TopoStructureAndBranchPara(CircleNumber,5)*(TopoStructureAndBranchPara(CircleNumber,3

41、)+.劇妆诨貰攖苹埘呂仑庙。j*TopoStructureAndBranchPara(CircleNumber,4);ctureAndBranchPara(CircleNumber,1)=NAM(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPara(CircleNumber,2);臠龍讹驄桠业變墊罗蘄。elseNAM(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPara(CircleNumber,1)=.鰻順褛悦漚縫冁屜鸭骞

42、。NAM(TopoStructureAndBranchPara(CircleNumber,1),TopoStructureAndBranchPara(CircleNumber,1)+.穑釓虚绺滟鳗絲懷紓泺。+1/(TopoStructureAndBranchPara(CircleNumber,3)+.j*TopoStructureAndBranchPara(CircleNumber,4)+j*TopoStructureAndBranchPara(CircleNumber,5);隶誆荧鉴獫纲鴣攣駘賽。NAM(TopoStructureAndBranchPara(CircleNumber,2),T

43、opoStructureAndBranchPara(CircleNumber,2)=.浹繢腻叢着駕骠構砀湊。NAM(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPara(CircleNumber,2)+.鈀燭罚櫝箋礱颼畢韫粝。洛阳理工学院毕业设计论文洛阳理工学院毕业设计论文 j*TopoStructureAndBranchPara(CircleNumber,4)+j*TopoStructureAndBranchPara(CircleNumber,5);惬執缉蘿绅颀阳灣熗鍵。NAM(TopoStructureA

44、ndBranchPara(CircleNumber,1),TopoStructureAndBranchPara(CircleNumber,2)=.贞廈给鏌綞牵鎮獵鎦龐-1/(TopoStructureAndBranchPara(CircleNumber,3)+.j*TopoStructureAndBranchPara(CircleNumber,4);NAM(TopoStructureAndBranchPara(CircleNumber,2),TopoStructureAndBranchPara(CircleNumber,1)=NAM(TopoStructureAndBranchPara(Cir

45、cleNumber,1),TopoStructureAndBranchPara(CircleNumber,2);嚌鲭级厨胀鑲铟礦毁蕲。endend%fname,pname=uigetfile(*.dat,SelectNodedata-file);薊镔竖牍熒浹醬籬铃騫。Nodename=strcat(pname,fname);NodeData=csvread(Nodename);floatmin=0.00001;datamax=0;m=1;n=1;fori=1:NumberOfNode-1ifNodeData(i,1)=1sum=0;sum1=0;forw=1:NumberOfNodesum=s

46、um+NodeData(w,4)*(real(NAM(i,w)*cosd(NodeData(i,5)-NodeData(w,5)+imag(NAM(i,w)*sind(NodeData(i,5)-NodeData(w,5);齡践砚语蜗铸转絹攤濼。sum1=sum1+NodeData(w,4)*(real(NAM(i,w)*sind(NodeData(i,5)-NodeData(w,5)-imag(NAM(i,w)*cosd(NodeData(i,5)-NodeData(w,5);绅薮疮颧訝标販繯轅赛。endA(n)=sum;n=n+1;A(n)=sum1;n=n+1;B(m)=NodeData

47、(i,2)-NodeData(i,4)*sum;datamax=max(datamax,B(m);m=m+1;B(m)=NodeData(i,3)-NodeData(i,4)*sum1;datamax=max(datamax,B(m);m=m+1;elsesum=0;forr=1:NumberOfNodesum=sum+NodeData(r,4)*(real(NAM(i,r)*cosd(NodeData(i,5)-NodeData(r,5)+imag(NAM(i,r)*sind(NodeData(i,5)-NodeData(r,5);饪箩狞屬诺釙诬苧径凛。endA(n)=sum;n=n+1;B

48、(m)=NodeData(i,2)-NodeData(i,4)*sum;datamax=max(datamax,B(m);m=m+1;endendwhiledatamaxfloatminm=1;fori=1:NumberOfNode-1n=1;fork=1:NumberOfNode-1ifi=kYMatrix(m,n)=NodeData(i,4)人2*imag(NAM(i,i);ifNodeData(i,1)=1YMatrix(m,n)=YMatrix(m,n)+NodeData(i,4)*A(m+1);endn=n+1;elseYMatrix(m,n)=-NodeData(i,4)*Node

49、Data(k,4)*(real(NAM(i,k)*sind(NodeData(i,5)-NodeData(k,5)-imag(NAM(i,k)*cosd(NodeData(i,5)-NodeData(k,5);烴毙潜籬賢擔視蠶贲粵。n=n+1;endifNodeData(k,1)=1ifi=kYMatrix(m,n)=-NodeData(i,4)*real(NAM(i,i)-A(m);n=n+1;else洛阳理工学院毕业设计论文洛阳理工学院毕业设计论文n=n+1; n=n+1; YMatrix(m,n)=-NodeData(i,4)*(real(NAM(i,k)*cosd(NodeData(i

50、,5)-NodeData(k,5)+imag(NAM(i,k)*sind(NodeData(i,5)-NodeData(k,5);鋝岂涛軌跃轮莳講嫗键。n=n+1;endendendm=m+1;ifNodeData(i,1)=1n=1;forl=1:NumberOfNode-1ifi=lYMatrix(m,n)=NodeData(i,4)人2*real(NAM(i,i)+NodeData(i,4)*A(m-1);撷伪氢鱧轍幂聹諛詼庞。n=n+1;elseYMatrix(m,n)=NodeData(i,4)*NodeData(l,4)*(real(NAM(i,l)*cosd(NodeData(i

51、,5)-NodeData(l,5)+imag(NAM(i,l)*sind(NodeData(i,5)-NodeData(l,5);踪飯梦掺钓貞绫賁发蘄。end洛阳理工学院毕业设计论文洛阳理工学院毕业设计论文洛阳理工学院毕业设计论文n=n+1; n=n+1; # ifNodeData(l,1)=1ifi=lYMatrix(m,n)=NodeData(i,4)*imag(NAM(i,i)-A(m);n=n+1;elseYMatrix(m,n)=-NodeData(i,4)*(real(NAM(i,l)*sind(NodeData(i,5)-NodeData(l,5)-imag(NAM(i,l)*c

52、osd(NodeData(i,5)-NodeData(l,5);婭鑠机职銦夾簣軒蚀骞。n=n+1;endendendm=m+1;endendX=-inv(YMatrix)*B;datamax=0;m=1;fori=1:NumberOfNode-1NodeData(i,5)=NodeData(i,5)+X(m);m=m+1;ifNodeData(i,1)=1NodeData(i,4)=NodeData(i,4)+X(m);m=m+1;endendm=1;n=1;fori=1:NumberOfNode-1ifNodeData(i,1)=1sum=0;sum1=0;forv=1:NumberOfNo

53、desum=sum+NodeData(v,4)*(real(NAM(i,v)*cosd(NodeData(i,5)-NodeData(v,5)+imag(NAM(i,v)*sind(NodeData(i,5)-NodeData(v,5);譽諶掺铒锭试监鄺儕泻。sum1=sum1+NodeData(v,4)*(real(NAM(i,v)*sind(NodeData(i,5)-NodeData(v,5)-imag(NAM(i,v)*cosd(NodeData(i,5)-NodeData(v,5);俦聹执償閏号燴鈿膽賾。endA(n)=sum;洛阳理工学院毕业设计论文洛阳理工学院毕业设计论文洛阳理工

54、学院毕业设计论文 m=m+1; A(n)=sum1;n=n+1;B(m)=NodeData(i,2)-NodeData(i,4)*sum;datamax=max(datamax,B(m);m=m+1;B(m)=NodeData(i,3)-NodeData(i,4)*sum1;datamax=max(datamax,B(m);m=m+1;elsesum=0;forr=1:NumberOfNodesum=sum+NodeData(r,4)*(real(NAM(i,r)*cosd(NodeData(i,5)-NodeData(r,5)+imag(NAM(i,r)*sind(NodeData(i,5)

55、-NodeData(r,5);缜電怅淺靓蠐浅錒鵬凜。endA(n)=sum;n=n+1;B(m)=NodeData(i,2)-NodeData(i,4)*sum;datamax=max(datamax,B(m);endendendfori=1:NumberOfNodeV(i)=NodeData(i,4)*cosd(NodeData(i,5)+j*NodeData(i,4)*sind(NodeData(i,5);骥擯帜褸饜兗椏長绛粤。endsum=0;sum1=0;foru=1:NumberOfNodesum=sum+real(NAM(NumberOfNode,u)*real(V(u)-imag

56、(NAM(NumberOfNode,u)*imag(V(u);癱噴导閽骋艳捣靨骢鍵。sum1=sum1-real(NAM(NumberOfNode,u)*imag(V(u)-imag(NAM(NumberOfNode,u)*real(V(u);鑣鸽夺圆鯢齙慫餞離龐。endBalance=(NodeData(NumberOfNode,4)*sum-NodeData(NumberOfNode,5)*sum1)+j*(NodeData(NumberOfNode,5)*sum+NodeData(NumberOfNode,4)*sum1);榄阈团皱鹏緦寿驏頦蕴。fori=1:NumberOfBranch

57、ifTopoStructureAndBranchPara(i,5)0.85S(TopoStructureAndBranchPara(i,1),TopoStructureAndBranchPara(i,2)=(abs(V(TopoStructureAndBranchPara(i,1)人2*(conj(TopoStructureAndBranchPara(i,5)-1)/(TopoStructureAndBranchPara(i,5)*(TopoStructureAndBranchPara(i,3)+j*TopoStructureAndBranchPara(i,4)+.逊输吴贝义鲽國鳩犹騸。V(T

58、opoStructureAndBranchPara(i,1)*conj(V(TopoStructureAndBranchPara(i,1)-V(TopoStructureAndBranchPara(i,2)*(1/(TopoStructureAndBranchPara(i,5)*(TopoStructureAndBranchPara(i,3)+.幘觇匮骇儺红卤齡镰瀉。j*TopoStructureAndBranchPara(i,4);S(TopoStructureAndBranchPara(i,2),TopoStructureAndBranchPara(i,1)=(abs(V(TopoStru

59、ctureAndBranchPara(i,2)A2*(conj(1-TopoStructureAndBranchPara(i,5)/(TopoStructureAndBranchPara(i,5)A2*(TopoStructureAndBranchPara(i,3)+j*TopoStructureAndBranchPara(i,4)+.誦终决懷区馱倆侧澩V(TopoStructureAndBranchPara(i,2)*conj(V(TopoStructureAndBranchPara(i,2)-V(TopoStructureAndBranchPara(i,1)*(1/(TopoStructu

60、reAndBranchPara(i,5)*(TopoStructureAndBranchPara(i,3)+.医涤侣綃噲睞齒办銩凛。j*TopoStructureAndBranchPara(i,4);elseS(TopoStructureAndBranchPara(i,1),TopoStructureAndBranchPara(i,2)=(abs(V(TopoStructureAndBranchPara(i,1)人2*(-j)*TopoStructureAndBranchPara(i,5)+V(TopoStructureAndBranchPara(i,1)*.舻当为遙头韪鳍哕晕糞。conj(V

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论