新华师大版九年级上册初中数学 24.2 直角三角形的性质课时练(课后作业设计)_第1页
新华师大版九年级上册初中数学 24.2 直角三角形的性质课时练(课后作业设计)_第2页
新华师大版九年级上册初中数学 24.2 直角三角形的性质课时练(课后作业设计)_第3页
新华师大版九年级上册初中数学 24.2 直角三角形的性质课时练(课后作业设计)_第4页
新华师大版九年级上册初中数学 24.2 直角三角形的性质课时练(课后作业设计)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档 精心整理精品文档 可编辑的精品文档24.2 直角三角形的性质一、选择题1.将一副直角三角尺如图放置,若AOD=20,则BOC的大小为()A.140B.160C.170D.1502. 在RtABC中,C=90,B=46,则A=()A.44B.34C.54D.643. 若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是()A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形4. 在一个直角三角形中,有一个锐角等于60,则另一个锐角的度数是()A.120B.90C.60D.305. 直角三角形的一个锐角是23,则另一个锐角等于()A.23B.63C.67D.776

2、. 在直角三角形中,其中一个锐角是另一个锐角的2倍,则此三角形中最小的角是()A.15B.30C.60D.907. 满足下列条件的ABC,不是直角三角形的是()A.C=A+BB.a:b:c=3:4:5C.C=A-BD.A:B:C=3:4:58. 在直角三角形中,两个锐角的度数比为2:3,则较小锐角的度数为()A.20B.32C.36D.729. 已知ABC是直角三角形,且C=Rt,若A=34,则B=()A.66B.56C.46D.14610. 若直角三角形中的两个锐角之差为16,则较大的一个锐角的度数是()A.37B.53C.26D.6311. 如果直角三角形的一个锐角是另一个锐角的4倍,那么

3、这个直角三角形中一个锐角的度数是()A.9B.18C.27D.3612. ABC中,C=90,A:B=2:3,则A的度数为()A.18B.36C.54D.7213. 若直角三角形中的两个锐角之差为22,则较小的一个锐角的度数是()A.24B.34C.44D.4614. RtABC中,A=90,角平分线AE、中线AD、高线AH的大小关系是()A.AHAEADB.AHADAEC.AHADAED.AHAEAD15. 直角三角形两锐角的平分线相交得到的钝角为()A.150oB.135oC.120oD.120o或135o二、填空题16. 如图所示的三角板中的两个锐角的和等于 度.17. RtABC中,C

4、=90,A=3530,则B= .18. 如图所示,在ABC中,C=90,EFAB,1=50,则B的度数是 度.19. 如图所示,BDAC于点D,DEAB,EFAC于点F,若BD平分ABC,则与CEF相等的角(不包括CEF)的个数是 .20. 已知RtABC的两直角边长分别为3cm,4cm,斜边长为5cm,则斜边上的高等于 cm.三、解答题21. 如图,在直角三角形ABC中,ACB=90,D是AB上一点,且ACD=B.求证:CDAB. 22. 在直角三角形中,有一个锐角是另一个锐角的4倍,求这个直角三角形各个角的度数.23. 如图,在ACB中,ACB=90,CDAB于D.(1)求证:ACD=B;

5、(2)若AF平分CAB分别交CD、BC于E、F,求证:CEF=CFE. 24. 如图,ABC中,AD是BC边上的高线,BE是一条角平分线,它们相交于点P,已知EPD=125,求BAD的度数.25. 在直角ABC中,ACB=90,B=30,CDAB于D,CE是ABC的角平分线.(1)求DCE的度数. (2)若CEF=135,求证:EFBC. 参考答案一、1.B 分析:将一副直角三角尺如图放置,AOD=20,COA=90-20=70,BOC=90+70=160.故选B. 2. A 分析:C=90,B=46,A=90-46=44.故选A.3. D 分析:A、等腰三角形,三条高线交点在三角形内或外或某

6、一顶点处,故A错误;B、等边三角形,三条高线交点在三角形内,故B错误;C、因为已知无法确定其两腰相等,而只要是直角三角形就行了,不一定非得是等腰直角三角形,故C错误;D、因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形,故D正确.故选D.4. D 分析:直角三角形中,一个锐角等于60,另一个锐角的度数90-60=30.故选D.5. C 分析:直角三角形的一个锐角是23,另一个锐角是:90-23=67.故选C.6. B 分析:设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90,解得x=30,即此三角形中最小的角是30.故选B.7. D 分析:A.

7、C=A+B,C=90,是直角三角形,故本选项错误;B.32+42=25=52,ABC是直角三角形,故本选项错误;C.C=A-B,C+B=A,A=90,是直角三角形,故本选项错误;D.A:B:C=3:4:5,最大的角C=18090,是锐角三角形,故本选项正确.故选D.8.C 分析:设两锐角分别为2k、3k,由题意得,2k+3k=90,解得k=18,所以较小锐角的度数为182=36.故选C.9. B 分析:C=Rt,A=34,B=90-A=90-34=56.故选B.10.B 分析:设两个锐角分别为x、y,根据题意得,x+y90,xy16.+得,2x=106,解得x=53,-得,2y=74,解得y=

8、37,所以方程组的解为x53,y37,故较大的一个锐角的度数是53.故选B.11. B 分析:设较小的锐角是x度,则另一角是4x度.则x+4x=90,解得:x=18.故选B.12. B 分析:A:B=2:3,设A=2k,B=3k,C=90,A+B=90,即2k+3k=90,解得k=18,A=36.故选B.13. B 分析:两个锐角和是90,一个直角三角形两个锐角的差为22,设一个锐角为x,则另一个锐角为90-x,得90-x-x=22,得x=34.故选B.14.D 分析:RtABC中,AB=AC;(图)根据等腰三角形三线合一的性质知:AD、AH、AE互相重合,此时AD=AH=AE;RtABC中,

9、ABAC;(设ACAB,如图)在RtAHE中,由于AE是斜边,故AEAH;同理可证ADAH;AEDAHD=90,ADHAHE=90,AEDADE;根据大角对大边知:ADAE;即ADAEAH;综上所述,角平分线AE、中线AD、高线AH的大小关系是AHAEAD;故选D.15. B 分析:直角三角形中,两锐角三角形度数和为90,则两锐角的各一半度数和为45,根据三角形内角和为180,可得钝角度数为135,故选B.二. 16. 90 17. 54.5 分析:RtABC中,C=90,A=3530,B=90-A=90-3530=5430=54.5.18. 40 分析:1=50,CEF=50,EFAB,A=

10、CEF=50,ABC是直角三角形,B=90-A=90-50=40.19. 4 分析:如图,BDAC,EFAC,BDEF,BD平分ABC,1=2,与CEF相等的角有1、2、3、4共4个.20. 2.4 分析:如图,AC=3cm,BC=4cm,AB=5cm,CD为斜边AB上的高SABC=ACBC=CDAB,34=5CDCD=2.4cm.三、21.证明:ACB=90,A+B=90.ACD=B,A+ACD=90.ADC=90,CDAB.22. 解:设一个锐角为x度,则另一个锐角为4x度,那么根据三角形内角和定理:三角形内角之和为180,所以x+4x+90=180,x=18,4x=72,答:三角分别为18,72,90.23. (1)证明:ACB=90,CDAB于D,ACD+BCD=90,B+BCD=90,ACD=B;(2)在RtAFC中,CFA=90-CAF,同理在RtAED中,AED=90-DAE.又AF平分CAB,CAF=DAE,AED=CFE,又CEF=AED,CEF=CFE.24. 解:AD是BC边上的高线,EPD=125,CBE=EPD-ADB=125-90=35,BE是一条角平分线,ABD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论