河北省定州市杨家庄初级中学2022年数学九上期末预测试题含解析_第1页
河北省定州市杨家庄初级中学2022年数学九上期末预测试题含解析_第2页
河北省定州市杨家庄初级中学2022年数学九上期末预测试题含解析_第3页
河北省定州市杨家庄初级中学2022年数学九上期末预测试题含解析_第4页
河北省定州市杨家庄初级中学2022年数学九上期末预测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件若设这个百分数为,则可列方程()ABCD2下列事件中,必然事件是( )A打开电视,正在播放宜春二套B抛一枚硬币,正面朝上C明天会下雨D地球绕着太阳转3一元二次方

2、程 x2 x0的根是 ( )Ax10,x21Bx10,x21Cx1x20Dx1x214在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()ABCD5如图,在ABC中,中线AD、BE相交于点F,EGBC,交AD于点G,则的值是( )ABCD6如图所示的几何体的左视图为( )ABCD7如图,四边形ABCD内接于O,E为CD延长线上一点,若ADE110,则B()A80B100C110D1208下列函数属于二次函数的是()AyxBy(x3)2x2CyxDy2(x+1)219如图所示几何体的左视图正确的是( )ABCD10如图在中,弦于点于点,若则的半径的长为( )ABCD11为了估计抛掷某

3、枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验经过统计得到凸面向上的次数为次,凸面向下的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为( )ABCD12已知函数的部分图像如图所示,若,则的取值范围是( )ABCD二、填空题(每题4分,共24分)13如图,在RtABC中,BCA=90,BAC=30,BC=4,将RtABC绕A点顺时针旋转90得到RtADE,则BC扫过的阴影面积为_14已知函数,当 时,函数值y随x的增大而增大15已知非负数a、b、c满足a+b=2,则d的取值范围为_16如图,在ABC中,AC:BC:AB3:4:5,O沿着ABC的内部边缘滚动一圈,若O的半径为1

4、,且圆心O运动的路径长为18,则ABC的周长为_17如图,在中,且,点是斜边上的一个动点,过点分别作于点,于点,连接,则线段的最小值为_18如图,双曲线经过斜边的中点,与直角边交于点过点作于点,连接,则的面积是_三、解答题(共78分)19(8分)如图,在中,是的平分线,是上一点,以为半径的经过点(1)求证:是切线;(2)若,求的长20(8分)如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且PDA=PBD延长PD交圆的切线BE于点E(1)判断直线PD是否为O的切线,并说明理由;(2)如果BED=60,PD=,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上

5、,如图2,求证:四边形DFBE为菱形21(8分)如图,在边长为1的正方形网格中,ABC的顶点均在格点上,把ABC绕点C逆时针旋转90后得到A1B1C(1)画出A1B1C,;(2)求在旋转过程中,CA所扫过的面积22(10分)已知二次函数y2x2+bx6的图象经过点(2,6),若这个二次函数与x轴交于AB两点,与y轴交于点C,求出ABC的面积23(10分)如图,梯形ABCD中,AB/CD,且AB=2CD,E,F分别是AB,BC的中点EF与BD相交于点M(1)求证:EDMFBM;(2)若DB=9,求BM24(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为40米的

6、篱笆围成已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米(1)若苗圃园的面积为102平方米,求x;(2)若使这个苗圃园的面积最大,求出x和面积最大值.25(12分)已知二次函数yax2+bx+4经过点(2,0)和(2,12)(1)求该二次函数解析式;(2)写出它的图象的开口方向 、顶点坐标 、对称轴 ;(3)画出函数的大致图象26已知:如图,点在射线上求作:正方形,使线段为正方形的一条边,且点在内部参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意:第一年的产量+第二年的产量+第三年的产量=1且今后两年的产量都比前一年增长一个相同的百分数x【详解】解:已设这个百分数

7、为x200+200(1+x)+200(1+x)2=1故选B【点睛】本题考查对增长率问题的掌握情况,理解题意后以三年的总产量做等量关系可列出方程2、D【解析】根据必然事件的概念(必然事件指在一定条件下一定发生的事件)可判断正确答案【详解】解:、打开电视,正在播放宜春二套,是随机事件,故错误;、抛一枚硬币,正面朝上是随机事件,故错误;、明天会下雨是随机事件,故错误;、地球绕着太阳转是必然事件,故正确;故选:【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不

8、发生的事件3、B【分析】把一元二次方程化成x(x+1)=0,然后解得方程的根即可选出答案【详解】解:一元二次方程x2+x=0,x(x+1)=0,x1=0,x2=1,故选B.【点睛】本题考查了因式分解法求一元二次方程的根.4、D【分析】根据轴对称图形的概念求解如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意故选D.【点睛】本题主要考查轴对称图形的知识点确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合5、

9、C【分析】先证明AG=GD,得到GE为ADC的中位线,由三角形的中位线可得GEDCBD;由EGBC,可证GEFBDF,由相似三角形的性质,可得;设GF=x,用含x的式子分别表示出AG和AF,则可求得答案【详解】E为AC中点,EGBC,AG=GD,GE为ADC的中位线,GEDCBDEGBC,GEFBDF,FD=2GF设GF=x,则FD=2x,AG=GD=GF+FD=x+2x=3x,AF=AG+GF=3x+x=4x,故选:C【点睛】本题考查了三角形的中位线定理及相似三角形的判定与性质,熟练掌握相关定理及性质,是解答本题的关键6、D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个

10、几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D选项符合题意,故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B、C.7、C【分析】直接利用圆内接四边形的性质分析得出答案【详解】四边形ABCD内接于O,E为CD延长线上一点,ADE110,BADE110故选:C【点睛】本题考查圆内接四边形的性质. 熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.8、D【分析】由二次函数的定义:形如,则是的二次函数,从而可得答案【详解】解:A自

11、变量x的次数不是2,故A错误;B整理后得到,是一次函数,故B错误C由可知,自变量x的次数不是2,故C错误;D是二次函数的顶点式解析式,故D正确故选:D【点睛】本题考查的是二次函数的定义,掌握二次根式的定义是解题的关键9、A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线故选A【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图10、C【分析】根据垂径定理求得OD,AD的长,并且在直角AOD中运用勾股定理即可求解【详解】解:弦,于点,于点,四边形是矩形,;故选:【点睛】本题考查了垂径定理、勾股定理、

12、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键11、D【分析】由向上和向下的次数可求出向下的频率,根据大量重复试验下,随机事件发生的频率可以作为概率的估计值即可得答案【详解】凸面向上的次数为420次,凸面向下的次数为580次,凸面向下的频率为580(420+580)=0.58,大量重复试验下,随机事件发生的频率可以作为概率的估计值,估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为0.58,故选:D【点睛】本题考查利用频率估计概率,熟练掌握大量重复试验下,随机事件发生的频率可以作为概率的估计值是解题关键12、C【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(3,1),然后

13、观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可【详解】yax2bxc的对称轴为直线x1,与x轴的一个交点为(1,1),抛物线与x轴的另一个交点为(3,1),当3x1时,y1故选:C【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.二、填空题(每题4分,共24分)13、4【分析】先利用含30度的直角三角形三边的关系得到AB=2BC=8,AC=BC=,再根据旋转的性质得到CAE=BAD=90,然后根据扇形的面积公式,利用BC扫过的阴影面积=S扇形BAD-SCAE进行计算【详解】解:BCA=90,BAC=30,AB=2BC=8,AC=BC=

14、4,RtABC绕A点顺时针旋转90得到RtADE,CAE=BAD=90,BC扫过的阴影面积=S扇形BAD-SCAE=故答案为:4【点睛】本题考查了扇形面积计算公式:设圆心角是n,圆的半径为R的扇形面积为S,则S扇形=或S扇形=(其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积也考查了旋转的性质14、x1【解析】试题分析:=,a=10,抛物线开口向下,对称轴为直线x=1,当x1时,y随x的增大而增大,故答案为x1考点:二次函数的性质15、5d1【分析】用a表示出b、c并求出a的取值范围,再代入d整理成关于a的函数形式,然后根据二次函数的增减性求出答案即可【详解】a

15、+b=2,c-a=3,b=2-a,c=3+a,b,c都是非负数,解不等式得,a2,解不等式得,a-3,-3a2,又a是非负数,0a2,d-a2-b-c=0d=a2+b+c=a2+(2-a)+3+a,=a2+5,对称轴为直线a=0,a=0时,最小值=5,a=2时,最大值=22+5=1,5d1故答案为:5d1【点睛】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出d关于a的函数关系式16、4【分析】如图,首先利用勾股定理判定ABC是直角三角形,由题意得圆心O所能达到的区域是DEG,且与ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、E

16、P、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DEGP,EFQN,DFHM,DEGP,DFHM,EFQN,PEF90,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得DEFACB,根据相似三角形的性质可知:DEEFFDACCBBA341,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AGAHx,BNBMy,根据线段的和差表示出AC、B

17、C、AB的长,进而根据ACCBBA341列出比例式,继而求出x、y的值,进而即可求解ABC的周长【详解】ACCBBA341,设AC3a,CB4a,BA1a(a0)ABC是直角三角形,设O沿着ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,DGEP,EQFN,FMDH,O的半径为1DGDHPEQEFNFM1,则有矩形DEPG、矩形EQNF、矩形DFMH,DEGP,EFQN,DFHM,DEG

18、P,DFHM,EFQN,PEF90又CPECQE90, PEQE1四边形CPEQ是正方形,PCPEEQCQ1,O的半径为1,且圆心O运动的路径长为18,DE+EF+DF18,DEAC,DFAB,EFBC,DEFACB,DFEABC,DEFABC,DE:EF:DFAC:BC:AB3:4:1,设DE3k(k0),则EF4k,DF1k,DE+EF+DF18,3k+4k+1k18,解得k, DE3k,EF4k6,DF1k,根据切线长定理,设AGAHx,BNBMy,则ACAG+GP+CPx+1x+11,BCCQ+QN+BN1+6+yy+2,ABAH+HM+BMx+yx+y+21,AC:BC:AB3:4:

19、1,(x+11):(y+2):(x+y+21)3:4:1,解得x2,y3,AC21,BC10,AB31,AC+BC+AB4所以ABC的周长为4故答案为4【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点17、【分析】由勾股定理求出的长,再证明四边形是矩形,可得,根据垂线段最短和三角形面积即可解决问题【详解】解:,且,四边形是矩形.如图,连接AD,则,当时,的值最小,此时,的面积,的最小值为;故答案为:【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积

20、、垂线段最短等知识,解题的关键是熟练掌握基本知识,本题属于中考常考题型18、1【分析】先证明OEDOAB,得出相似比=,再根据反比例函数中k的几何意义得出SAOC=SDOE=2=1,从而可得出AOB的面积,最后由SOBC=SAOB-SAOC可得出结果【详解】解:OAB=90,DEOA,DEAB,OEDOAB,D为OB的中点D,双曲线的解析式是y=,SAOC=SDOE=2=1,SAOB=4SDOE=4,SOBC=SAOB-SAOC=1,故答案为:1【点睛】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点三、解答题(共78

21、分)19、(1)证明见解析;(2)【分析】(1)如图,连接OD欲证BC是O切线,只需证明ODBC即可(2)过点D作DEAB,根据角平分线的性质可知CD=DE=3,由勾股定理得到BE的长,再通过设未知数利用勾股定理得出AC的长【详解】(1)证明:如解图1所示,连接平分,是的切线;(2)如解图2,过作于,又平分,在中,由勾股定理,得,设,则,在中,则由勾股定理,得:,解得:,的长为【点睛】本题综合性较强,既考查了切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可同时考查了角平分线的性质,勾股定理20、(1)证明见解析;(2)1;(3)证明见解析.【分析】(

22、1)连接OD,由AB是圆O的直径可得ADB=90,进而求得ADO+PDA=90,即可得出直线PD为O的切线;(2)根据BE是O的切线,则EBA=90,即可求得P=30,再由PD为O的切线,得PDO=90,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;(3)根据题意可证得ADF=PDA=PBD=ABF,由AB是圆O的直径,得ADB=90,设PBD=x,则可表示出DAF=PAD=90+x,DBF=2x,由圆内接四边形的性质得出x的值,可得出BDE是等边三角形进而证出四边形DFBE为菱形【详解】解:(1)直线PD为O的切线,理由如下:如图1,连接OD,AB是圆O的直径,ADB=90,A

23、DO+BDO=90,又DO=BO,BDO=PBD,PDA=PBD,BDO=PDA,ADO+PDA=90,即PDOD,点D在O上,直线PD为O的切线;(2)BE是O的切线,EBA=90,BED=60,P=30,PD为O的切线,PDO=90,在RtPDO中,P=30,PD=,解得OD=1,=2,PA=POAO=21=1;(3)如图2,依题意得:ADF=PDA,PAD=DAF,PDA=PBDADF=ABF,ADF=PDA=PBD=ABF,AB是圆O的直径,ADB=90,设PBD=x,则DAF=PAD=90+x,DBF=2x,四边形AFBD内接于O,DAF+DBF=180,即90+x+2x=180,解

24、得x=30,ADF=PDA=PBD=ABF=30,BE、ED是O的切线,DE=BE,EBA=90,DBE=60,BDE是等边三角形,BD=DE=BE,又FDB=ADBADF=9030=60DBF=2x=60,BDF是等边三角形,BD=DF=BF,DE=BE=DF=BF,四边形DFBE为菱形.【点睛】本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大21、 (1)见解析;(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可. (2)利用勾股定理求出AC的长,CA所扫过的面积等于扇形CAA1的面积,然后列式进行计

25、算即可【详解】解:(1)A1B1C为所求作的图形: (2)AC=,ACA1=90, 在旋转过程中,CA所扫过的面积为: 【点睛】本题考查的知识点是作图-旋转变换, 扇形面积的计算,解题的关键是熟练的掌握作图-旋转变换, 扇形面积的计算.22、1【分析】如图,把(0,6)代入y2x2+bx6可得b值,根据二次函数解析式可得点C坐标,令y=0,解方程可求出x的值,即可得点A、B的坐标,利用ABC的面积ABOC,即可得答案【详解】如图,二次函数y2x2+bx6的图象经过点(2,6),624+2b6,解得:b4,抛物线的表达式为:y2x24x6;点C(0,6);令y0,则2x24x6=0,解得:x11

26、,x2=3,点A、B的坐标分别为:(1,0)、(3,0),AB=4,OC=6,ABC的面积ABOC461【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积23、(1)证明见解析(2)3【解析】试题分析:(1)要证明EDMFBM成立,只需要证DEBC即可,而根据已知条件可证明四边形BCDE是平行四边形,从而可证明相似;(2)根据相似三角形的性质得对应边成比例,然后代入数值计算即可求得线段的长试题解析:(1)证明:AB=2CD , E是AB的中点,BE=CD,又ABCD,四边形BCDE是平行四边形,BCDE, BC=DE,EDMFBM;(2)BC=DE, F为BC的中点,BF=DE,EDMFBM,BM=DB,又DB=9,BM=3.考点:1. 梯形的性质;2. 平行四边形的判定与性质;3. 相似三角形的判定与性质.24、 (1)x=17;(2)当x=11米时,这个苗圃园的面积最大,最大值为198平方米.【分析】(1)根据题意列出方程,解出方程即可;(2)设苗圃园的面积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论