版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每题4分,共48分)1如图,两个反比例函数和在第一象限内的图象依次是C1和
2、C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为( )A2B3C4D52如图,P1、P2、P3是双曲线上的三点,过这三点分别作y轴的垂线,得到三个三角形,它们分别是P1A1O、P2A2O、P3A30,设它们的面积分别是S1、S2、S3,则( )AS1S2S3BS2S1S3CS3S1S2DS1S2 S33投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,观察两枚骰子向上一面的点数情况则下列事件为随机事件的是( )A点数之和等于1B点数之和等于9C点数之和大于1D点数之和大于124一元二次方程的一个根为,则的值为( )A1B2C3D45下列图
3、形中,既是轴对称图形又是中心对称图形的是()ABCD6如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若BAD105,则DCE的大小是( )A115B105C100D957如图,在平面直角坐标系中,正方形的顶点在坐标原点,点的坐标为,点在第二象限,且反比例函数的图像经过点,则的值是( )A-9B-8C-7D-68下列关系式中,是反比例函数的是( )AyByCxyD19下列说法正确的是( )A经过三点可以做一个圆B平分弦的直径垂直于这条弦C等弧所对的圆心角相等D三角形的外心到三边的距离相等10已知二次函数图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是( )ABCD11
4、抛物线y=x2+2x3的最小值是()A3 B3 C4 D412在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作O交BC于点M、N,O与AB、AC相切,切点分别为D、E,则O的半径和MND的度数分别为()A2,22.5B3,30C3,22.5D2,30二、填空题(每题4分,共24分)13在单词(数学)中任意选择-一个字母,选中字母“”的概率为_14某学习小组做摸球实验,在一个不透明的口袋里装有颜色不同的黄、白两种颜色的乒乓球若干只,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复下表是活动进行中的一组统计数据摸球的次数n1001502005008001000
5、摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601现从这个口袋中摸出一球,恰好是黄球的概率为_15从“线段,等边三角形,圆,矩形,正六边形”这五个图形中任取一个,取到既是轴对称图形又是中心对称图形的概率是_16如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=_.17在中,则内切圆的半径是_18有4张看上去无差别的卡片,上面分别写着2,3,4,6,小红随机抽取1张后,放回并混在一起,再随机抽取1张,则小红第二次取出的数字能够整除第一次取出的数字的概率为_三、解答题(共
6、78分)19(8分)如图,已知O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,EAB=ADB(1)求证:AE是O的切线;(2)已知点B是EF的中点,求证:EAFCBA;(3)已知AF=4,CF=2,在(2)的条件下,求AE的长20(8分)某小区开展了“行车安全,方便居民”的活动,对地下车库作了改进如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i1:2.4,ABBC,为了居民行车安全,现将斜坡的坡角改为13,即ADC13(此时点B、C、D在同一直线上)(1)求这个车库的高度AB;(2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米)(参考数据:sin130.2
7、25,cos130.974,tan130.231,cot134.331)21(8分)(1)若正整数、,满足,求、的值;(2)已知如图,在中,点在边上移动(不与点,点重合),将沿着直线翻折,点落在射线上点处,当为一个含内角的直角三角形时,试求的长度22(10分)如图,在平行四边形ABCD中,点E,F,G,H分别在边AB,BC,CD,DA上,AECG,AHCF,且EG平分HEF(1)求证:AEHCGF(2)若EFG90求证:四边形EFGH是正方形23(10分)如图,CD 为O 的直径,弦 AB 交 CD 于点E,连接 BD、OB(1)求证:AECDEB;(2)若 CDAB,AB=6,DE=1,求O
8、 的半径长24(10分)小红将笔记本电脑水平放置在桌子上,当显示屏与底板所在水平线的夹角为120时,感觉最舒适(如图1),侧面示意图如图2. 使用时为了散热,她在底板下垫入散热架后,电脑转到位置(如图3),侧面示意图为图4. 已知,于点,. (1)求的度数. (2)显示屏的顶部比原来的顶部升高了多少?(3)如图4,垫入散热架后,要使显示屏与水平线的夹角仍保持120,则显示屏应绕点按顺时针方向旋转多少度?并说明理由.25(12分)解方程:x2x3x226如图,河的两岸MN与PQ相互平行,点A,B是PQ上的两点,C是MN上的点,某人在点A处测得CAQ=30,再沿AQ方向前进20米到达点B,某人在点
9、A处测得CAQ=30,再沿AQ方向前进20米到达点B,测得CBQ=60,求这条河的宽是多少米?(结果精确到0.1米,参考数据1.414,1.732)参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:PCx轴,PDy轴,S矩形PCOD=4,SAOC=SBOD=1=,四边形PAOB的面积=S矩形PCOD-SAOC-SBOD=4-=1故选B考点:反比例函数系数k的几何意义2、D【分析】由于P1、P2、P3是同一反比例图像上的点,则围成的三角形虽然形状不同,但面积均为【详解】根据反比例函数的k的几何意义,P1A1O、P2A2O、P3A3O的面积相同,均为,所以S1=S2=S3,故选D【点
10、睛】本题考查反比例函数系数k的几何意义,过同一反比例上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,而围成的三角形的面积为,本知识点是中考的重要考点,应高度关注3、B【分析】根据随机事件的定义逐项判断即可.【详解】A、点数之和等于1,是不可能事件,不合题意;B、点数之和等于9,是随机事件,符合题意;C、点数之和大于1,是必然事件,不合题意;D、点数之和大于12,是不可能事件,不合题意;故选:B【点睛】本题考查事件的分类,事件根据其发生的可能性大小分为必然事件、随机事件、不可能事件随机事件是指在一定条件下,可能发生也可能不发生的事件4、B【分析】将x=2代入方程即可求得k
11、的值,从而得到正确选项【详解】解:一元二次方程x2-3x+k=0的一个根为x=2,22-32+k=0,解得,k=2,故选:B【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立5、A【分析】根据轴对称图形与中心对称图形的概念进行判断即可【详解】解:A、是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、是轴对称图形,不是中心对称图形,故此选项不合题意故选:A【点睛】本题考查的是中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可
12、重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合6、B【分析】根据圆内接四边形的对角互补得到BAD+BCD=180,而BCD与DEC为邻补角,得到DCE=BAD=105【详解】解:四边形ABCD是圆内接四边形,BAD+BCD=180,而BCD+DCE=180,DCE=BAD,而BAD=105,DCE=105故选B7、B【分析】作ADx轴于D,CEx轴于E,先通过证得AODOCE得出AD=OE,OD=CE,设A(x,),则C(,-x),根据正方形的性质求得对角线解得F的坐标,即可得出,解方程组求得k的值【详解】解:如图,作轴于,轴于连接AC,BO,.在和中,.设,则.和互相垂直平分,
13、点的坐标为,交点的坐标为,解得,故选.【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,全等三角形的判定和性质,熟练掌握正方形的性质是解题的关键8、C【解析】反比例函数的一般形式是y(k0)【详解】解:A、当k=0时,该函数不是反比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、由原函数变形得到y=-,符合反比例函数的定义,故本选项正确;D、只有一个变量,它不是函数关系式,故本选项错误故选C【点睛】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k0),反比例函数的一般形式是y(k0)9、C【解析】根据确定圆的条
14、件、垂径定理的推论、圆心角、弧、弦的关系、三角形的外心的知识进行判断即可【详解】解:A、经过不在同一直线上的三点可以作一个圆,A错误;B、平分弦(不是直径)的直径垂直于这条弦,B错误;C、等弧所对的圆心角相等,C正确;D、三角形的外心到各顶点的距离相等,D错误;故选:C【点睛】本题考查的是圆心角、弧、弦的关系、确定圆的条件、垂径定理的推论和三角形外心的知识,掌握相关定理并灵活运用是解题的关键10、D【分析】由抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧即可判断a、c、b的符号,进而可判断A项;抛物线的对称轴为直线x,结合抛物线的对称轴公式即可判断B项;由图象可知;当x=1时,a+b+c0
15、,再结合B项的结论即可判断C项;由(1,0)与(2,0)关于抛物线的对称轴对称,可知当x=2时,y0,进而可判断D项.【详解】解:A、抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧,a0,c0,0,b0,abc0,所以本选项错误;B、抛物线的对称轴为直线x,ab0,所以本选项错误;C、当x=1时,a+b+c0,且a=b,所以本选项错误;D、(1,0)与(2,0)关于抛物线的对称轴对称,且当x=1时,y0,当x=2时,y0,即4a2b+c0,且x,y均为正整数,与均为正整数,且,与奇偶性相同又或解得:或(2)解:ACB=90,AC=BCB=BAC=45又将BDE沿着直线DE翻折,点B落在射线
16、BC上点F处BDE=EDF=90,且BDEFDEBED=DEF=45,BEF=90,BE=EFAEF=180BEF =90如图a,当EAF=30时,设BD=x,则:BD=DF=DE=x,EAF=30,AF=,在RtAEF中,解得如图b,当AFE=30时,设BD=x,则:同理可得:,AFE =30,AF=在RtAEF中,解得综上所述,或【点睛】考核知识点:因式分解运用,轴对称,勾股定理.分析翻折过程,分类讨论情况是关键;运用因式分解降次是要点.22、 (1)证明见解析;(2)证明见解析.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)先证明四边形EFGH是平行四边形,再证明有一组邻边
17、相等,然后结合EFG90,即可证得该平行四边形是正方形【详解】证明:(1)四边形ABCD是平行四边形,AC在AEH与CGF中, ,AEHCGF(SAS);(2)四边形ABCD是平行四边形,ADBC,ABCD,BDAECG,AHCF,EBDG,HDBFBEFDGH(SAS),EFHG又AEHCGF,EHGF四边形HEFG为平行四边形EHFG,HEGFGEEG平分HEF,HEGFEG,FGEFEG,EFGF,平行四边形EFGH是菱形又EFG90,平行四边形EFGH是正方形【点睛】本题主要考查了四边形的综合性问题,关键要注意正方形和菱形的性质定理,结合考虑三角形的全等的证明,这是中考的必考点,必须熟
18、练掌握.23、(1)见解析;(2)O的半径为1【分析】(1)根据圆周角定理即可得出AD,CABD,从而可求证AECDEB;(2)由垂径定理可知BE3,设半径为r,由勾股定理可列出方程求出r【详解】解:(1)根据“同弧所对的圆周角相等”,得AD,CABD,AECDEB(2)CDAB,O为圆心,BEAB3,设O的半径为r,DE1,则OEr1,在RtOEB中,由勾股定理得:OE2EB2OB2,即:(r1)232r2,解得r1,即O的半径为1【点睛】本题考查圆的综合问题,涉及相似三角形的判定与性质,勾股定理,垂径定理等知识,综合程度较高,需要灵活运用所学知识24、(1);(2);(3)30,理由见解析【分析】(1)先求出该角的正弦值,根据特殊函数值求出角的度数,即可得出答案;(2)先求出BD的长度,再证明和互补,即三点在同一条直线上,故与BD的差即为所求;(3)先根据求出的度数,再根据求出的度数即可得出答案.【详解】解:(1),. (2)如图,过点作交的延长线于点. ,. ,. ,. ,. . 显示屏的顶部比原来顶部升高了. (3)显示屏应绕点按顺时针方向旋转30. 理由如下:设电脑显示屏绕点按顺时针方向旋转角至处,. 显示屏与水平线的夹角仍保持120,. ,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 励志主题班会2
- 第三单元 走向未来的少年检测题(含答案) -2024-2025学年度九年级道德与法治下册
- 东阳市外墙防水施工方案
- 2024秋苏教版二年级上册数学教学计划及进度表
- 幼儿园的学期教学计划范文
- 学校教学计划-2024学校教学工作计划
- 《无机材料科学基础》课件
- 《不干胶电子标签》课件
- 学校园文化建设五年推进计划
- 《浅谈学术浮躁》课件
- 贝朗注射泵输液泵的操作及维护保养
- 《质量管理小组活动准则》2020版_20211228_111842
- 2022财务部年终工作总结财务部处总监经理财务报告工作总结PPT课件模板
- 武汉大学考博推荐信(共1页)
- 起重吊装卸车施工方案
- 物业管理搞笑小品剧本 搞笑小品剧本:物业管理难啊
- 《木偶兵进行曲》教案
- 五四制青岛版一年级科学上册第四单元《水》全部教案
- GB∕T 39757-2021 建筑施工机械与设备 混凝土泵和泵车安全使用规程
- 签派程序与方法
- 组织架构图PPT模板
评论
0/150
提交评论