2023届云南省昆明市石林县数学九年级第一学期期末联考模拟试题含解析_第1页
2023届云南省昆明市石林县数学九年级第一学期期末联考模拟试题含解析_第2页
2023届云南省昆明市石林县数学九年级第一学期期末联考模拟试题含解析_第3页
2023届云南省昆明市石林县数学九年级第一学期期末联考模拟试题含解析_第4页
2023届云南省昆明市石林县数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若ABC=55,则ACD等于( )A20B35C40D552点在反比例

2、函数的图像上,则的值为( )ABCD3一元二次方程的正根的个数是( )ABCD不确定4对于二次函数,下列说法正确的是( )A当x0,y随x的增大而增大B当x=2时,y有最大值3C图像的顶点坐标为(2,7)D图像与x轴有两个交点5已知正比例函数y1的图象与反比例函数y2图象相交于点A(2,4),下列说法正确的是( )A反比例函数y2的解析式是y2=-8xB两个函数图象的另一交点坐标为(2,-4)C当x-2或0 x2时,y1y2D正比例函数y1与反比例函数y2都随x的增大而增大6若y=(2-m)是二次函数,则m等于( )A2B2C-2D不能确定7已知O的半径为10,圆心O到弦AB的距离为5,则弦A

3、B所对的圆周角的度数是()A30B60C30或150D60或1208如图,O的半径为6,直径CD过弦EF的中点G,若EOD60,则弦CF的长等于( )A6B6C3D99下列大学校徽内部图案中可以看成由某一个基本图形通过平移形成的是( )ABCD10如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:BE2AE;DFPBPH;DP2PHPC;FE:BC,其中正确的个数为()A1B2C3D4二、填空题(每小题3分,共24分)11如图,已知l1l2l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已

4、知AEEF1,FB3,则_12如图,内接于,若的半径为2,则的长为_13如图,已知AB是O的直径,弦CD与AB相交,若BCD24,则ABD的度数为_度14如图,直线l1l2l3,A、B、C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若ABC90,BD3,且,则mn的最大值为_15如图,四边形ABCD中,AB90,AB5cm,AD3cm,BC2cm,P是AB上一点,若以P、A、D为顶点的三角形与PBC相似,则PA_cm16如图,在圆中,是弦,点是劣弧的中点,联结,平分,联结、,那么_度17如图,两

5、弦AB、CD相交于点E,且ABCD,若B60,则A等于_度18如图,一块飞镖游戏板由大小相等的小正方形构成,向游戏板随机投掷一枚飞镖(飞镖每次都落在游戏板上),击中黑色区域的概率是_三、解答题(共66分)19(10分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,

6、求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?20(6分)如图,是的直径,弦,垂足为,连接过上一点作交的延长线于点,连接交于点,且(1)求证:是的切线;(2)延长交的延长线于点,若,求的长21(6分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转 270后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP=BQ;(2)当BQ= 时,求的长(结果保留 );(3)若APO的外心在扇形COD的内部,求OC的取值范围.22(8分)在下列的网格中,横、纵坐标均为整数的点

7、叫做格点,例如正方形的顶点,都是格点.要求在下列问题中仅用无刻度的直尺作图.(1)画出格点,连(或延长)交边于,使,写出点的坐标.(2)画出格点,连(或延长)交边于,使,则满足条件的格点有 个.23(8分)一个可以自由转动的转盘,其盘面分为等份,分别标上数字.小颖准备转动转盘次,现已转动次,每一次停止后,小颖将指针所指数字记录如下:次数数字小颖继续自由转动转盘次,判断是否可能发生“这次指针所指数字的平均数不小于且不大于”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,请说明理由(指针指向盘面等分线时为无效转次)24(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,且

8、AD/BC,BD的垂直平分线经过点O,分别与AD、BC交于点E、F(1)求证:四边形ABCD为平行四边形;(2)求证:四边形BFDE为菱形25(10分)计算:(1)(2)26(10分)如图,一次函数y=x+2的图象与反比例函数y=的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称(1)求A、B两点的坐标;(2)求ABC的面积参考答案一、选择题(每小题3分,共30分)1、A【解析】试题解析:圆内接四边形ABCD的边AB过圆心O,ADC+ABC=180,ACB=90,ADC=180ABC=125,BAC=90ABC=35,过点C的切线与边AD所在直线垂直于点M,MCA=ABC=55,A

9、MC=90,ADC=AMC+DCM,DCM=ADCAMC=35,ACD=MCADCM=5535=20故选A2、B【解析】把点M代入反比例函数中,即可解得K的值.【详解】解:点在反比例函数的图像上,解得k=3.【点睛】本题考查了用待定系数法求函数解析式,正确代入求解是解题的关键.3、B【分析】解法一:根据一元二次方程的解法直接求解判断正根的个数;解法二:先将一元二次方程化为一般式,再根据一元二次方程的根与系数的关系即可判断正根的个数【详解】解:解法一:化为一般式得,a=1,b=3,c=4,则,方程有两个不相等的实数根,即,所以一元二次方程的正根的个数是1;解法二:化为一般式得,方程有两个不相等的

10、实数根,则、必为一正一负,所以一元二次方程的正根的个数是1;故选B【点睛】本题考查了一元二次方程的解法,熟练掌握解一元二次方程的步骤是解题的关键;如果只判断正根或负根的个数,也可灵活运用一元二次方程的根与系数的关系进行判断4、B【详解】二次函数,所以二次函数的开口向下,当x2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.5、C【解析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可判断

11、求解【详解】解:正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),正比例函数y1=2x,反比例函数y2=8x两个函数图象的另一个角点为(-2,-4)A,B选项错误正比例函数y1=2x中,y随x的增大而增大,反比例函数y2=8x中,在每个象限内y随x的增大而减小,D选项错误当x-2或0 x2时,y1y2选项C正确故选:C【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键6、C【解析】分析:根据二次函数的定义,自变量指数为2,且二次项系数不为0,列出方程与不等式求解则可解答:解:根据二次函数的定义,得:m2-2=2解得m=2或m=

12、-2又2-m0m2当m=-2时,这个函数是二次函数故选C7、D【解析】由图可知,OA=10,OD=1根据特殊角的三角函数值求出AOB的度数,再根据圆周定理求出C的度数,再根据圆内接四边形的性质求出E的度数即可【详解】由图可知,OA=10,OD=1,在RtOAD中,OA=10,OD=1,AD=,tan1=,1=60,同理可得2=60,AOB=1+2=60+60=120,C=60,E=180-60=120,即弦AB所对的圆周角的度数是60或120,故选D【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.8、B【分析】连接DF,根

13、据垂径定理得到 , 得到DCF=EOD=30,根据圆周角定理、余弦的定义计算即可【详解】解:连接DF,直径CD过弦EF的中点G,DCF=EOD=30,CD是O的直径,CFD=90,CF=CDcosDCF=12 = ,故选B【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键9、C【分析】由平移的性质,分别进行判断,即可得到答案【详解】解:由平移的性质可知,C选项的图案是通过平移得到的;A、B、D中的图案不是平移得到的;故选:C【点睛】本题考查了平移的性质,解题的关键是掌握图案的平移进行解题10、D【分析】由正方形的性质和相似

14、三角形的判定与性质,即可得出结论【详解】解:BPC是等边三角形,BPPCBC,PBCPCBBPC60,在正方形ABCD中,ABBCCD,AADCBCD90ABEDCF30,BE2AE;故正确;PCCD,PCD30,PDC75,FDP15,DBA45,PBD15,FDPPBD,DFPBPC60,DFPBPH;故正确;PDHPCD30,DPHDPC,DPHCPD,DP2PHPC,故正确;ABE30,A90AEABBC,DCF30,DFDCBC,EFAE+DFBC,FE:BC(23):3故正确,故选:D【点睛】本题考查相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性

15、质和定理二、填空题(每小题3分,共24分)11、【分析】由l1l2,根据根据平行线分线段成比例定理可得FGAC;由l2l3,根据根据平行线分线段成比例定理可得【详解】l1l2,AEEF1,1,FGAC;l2l3,故答案为【点睛】本题考查了平行线分线段成比例定理,掌握平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例是解题的关键12、【分析】连接OB、OC,根据圆周角定理得到BOC=2A=90,根据勾股定理计算即可【详解】解:连接OB、OC,由圆周角定理得,BOC=2A=90,利用勾股定理得:BC=故答案为:【点睛】本题考查的是三角形的

16、外接圆与外心,掌握圆周角定理是解题的关键13、66【解析】连接AD,根据圆周角定理可求ADB=90,由同弧所对圆周角相等可得DCB=DAB,即可求ABD的度数【详解】解:连接AD,AB是直径,ADB90,BCD24,BADBCD24,ABD66,故答案为:66【点睛】本题考查了圆周角定理,根据圆周角定理可求ADB=90是本题的关键14、【分析】过作于,延长交于,过作于,过作于,设,得到,根据相似三角形的性质得到,由,得到,于是得到,然后根据二次函数的性质即可得到结论【详解】解:过作于,延长交于,过作于,过作于,设,即,即,当最大时,当时,的最大值为故答案为:【点睛】本题考查了平行线的性质,相似

17、三角形的判定和性质,二次函数的性质,正确的作出辅助线,利用相似三角形转化线段关系,得出关于m的函数解析式是解题的关键15、2或1【分析】根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可【详解】解:设APxcm则BPABAP(5x)cm以A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,当AD:PBPA:BC时,解得x2或1当AD:BCPA+PB时,解得x1,当A,D,P为顶点的三角形与以B,C,P为顶点的三角形相似,AP的值为2或1故答案为2或1【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质

18、以及判定定理是解题的关键16、120【分析】连接AC,证明AOC是等边三角形,得出的度数【详解】连接AC点C是 的中点 , AB平分OCAB是线段OC的垂直平分线 AOC是等边三角形 故答案为 【点睛】本题考查了等边三角形的判定定理,从而得出目标角的度数17、30【解析】首先根据圆周角定理,得A=BDC,再根据三角形的内角和定理即可求得BDC的度数,从而得出结论【详解】ABCD,DEB=90,B60BDC90-B=90-60=30,A=BDC=30,故答案为30.【点睛】综合运用了圆周角定理以及三角形的内角和定理18、【分析】根据几何概率的求解公式即可求解.【详解】解:总面积为9个小正方形的面

19、积,其中阴影部分面积为3个小正方形的面积飞镖落在阴影部分的概率是,故答案为【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的公式.三、解答题(共66分)19、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1【解析】分析:(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PCy轴于点C,由条件可求得PAC=60,可设AC=m,在RtPAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PEx轴于点E,交AB于点F

20、,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出PAB的面积,利用S四边形PAMB=SPAB+SAMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值详解:根据题意,把,代入抛物线解析式可得,解得,抛物线的表达式为,抛物线的顶点坐标为;如图1,过P作轴于点C,当时,即,设,则,把P点坐标代入抛物线表达式可得,解得或,经检验,与点A重合,不合题意,舍去,所求的P点坐标为;当两个动点移动t秒时,则,如图2,作轴于点E,交AB于点F,则,点A到PE的距离竽OE,点B到PE的距离等于BE,且,当时,S有最大值,最大值为1点睛:本题为二次函数的综合应用,涉及待定系数法、直角三角形

21、的性质、二次函数的性质、三角形的面积及方程思想等知识在(1)中注意待定系数法的应用,在(2)中构造RtPAC是解题的关键,在(3)中用t表示出P、M的坐标,表示出PF的长是解题的关键本题考查知识点较多,综合性较强,难度适中20、(1)见解析(2)【分析】(1)连接,由,推,证,得,根据切线判定定理可得;(2)连接,设的半径为,则,在中,求得,在中,求得,由,证,得,即,可求OM.【详解】(1)证明:连接,如图,而,即,是的切线;(2)解:连接,如图,设的半径为,则,在中,解得,在中,即,【点睛】考核知识点:切线判定,相似三角形判定和性质.理解切线判定和相似三角形判定是关键.21、(1)详见解析

22、;(2);(3)4OC1.【分析】(1) 连接OQ,由切线性质得APO=BQO=90,由直角三角形判定HL得RtAPORtBQO,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得AOP=BOQ,从而可得P、O、Q三点共线,在RtBOQ中,根据余弦定义可得cosB=, 由特殊角的三角函数值可得B=30,BOQ=60 ,根据直角三角形的性质得 OQ=4, 结合题意可得 QOD度数,由弧长公式即可求得答案.(3)由直角三角形性质可得APO的外心是OA的中点 ,结合题意可得OC取值范围.【详解】(1)证明:连接OQ. AP、BQ是O的切线,OPAP,OQBQ,APO=BQO=90,在RtA

23、PO和RtBQO中,RtAPORtBQO,AP=BQ.(2)RtAPORtBQO,AOP=BOQ,P、O、Q三点共线,在RtBOQ中,cosB=,B=30,BOQ= 60 ,OQ=OB=4,COD=90,QOD= 90+ 60 = 150,优弧QD的长=,(3)解:设点M为RtAPO的外心,则M为OA的中点,OA=1,OM=4,当APO的外心在扇形COD的内部时,OMOC,OC的取值范围为4OC1【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL证出RtAPORtBQO;(2)通过解直角三角

24、形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键22、(1)或或;(2)3个【分析】(1)根据题意可得E为BC中点,找到D关于直线BC的对称点M3,再连接AM3,即可得到3个格点;(2)根据题意,延长BC,由,得CF=3DF,故使CN3=3AD,连接AN3,即可得到格点.【详解】(1)如图,或或(2)如图,N的个数为3个,故答案为:3.【点睛】此题主要考查图形与坐标,解题的关键是熟知对称性与相似三角形的应用.23、能,【分析】根据平均数的定义求解可得后两次数字之和为8或9;根据题意画出树状图,再利用概率公式求其概率【详解】能设第4次、第5次转出的数字分别为和,根据题意得:,解得:,所以后两次数字之和为8或9;画出树状图:共有9种等情况数,其中“两次数字之和为8或9”的有5种,所以【点睛】本题考查用列表法或树状图的方法解决概率问题;求一元一次不等式组的方法以及概率公式的运用求出事件的所有情况和

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论