广东外语外贸大附设外语学校2022年九年级数学第一学期期末预测试题含解析_第1页
广东外语外贸大附设外语学校2022年九年级数学第一学期期末预测试题含解析_第2页
广东外语外贸大附设外语学校2022年九年级数学第一学期期末预测试题含解析_第3页
广东外语外贸大附设外语学校2022年九年级数学第一学期期末预测试题含解析_第4页
广东外语外贸大附设外语学校2022年九年级数学第一学期期末预测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图所示,半径为3的A经过原点O和C(0,2),B是y轴左侧A优弧上的一点,则( )A2BCD2若函数其几对对应值如下表,则方程(,为常数)根的个数为()

2、A0B1C2D1或23下列图形中是中心对称图形的有()个A1B2C3D44如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为A8BC4D5如图,AD是O的直径,以A为圆心,弦AB为半径画弧交O于点C,连结BC交AD于点E,若DE3,BC8,则O的半径长为( )AB5CD6如图,O是ABC的外接圆,已知ABO=50,则ACB的大小为()A30B40C45D507若3a5b,则a:b()A6:5B5:3C5:8D8:58从 1 到 9这9个自然数中任取一个,是偶数的概率是()ABCD9学生作业本每页大约为7.5忽米(1厘米100

3、0忽米),请用科学计数法将7.5忽米记为米,则正确的记法为( )A7.5105米B0.75106米C0.7510-4米D7.510-5米10如图,AB是O的弦,半径OCAB,D为圆周上一点,若的度数为50,则ADC的度数为 ()A20B25C30D50二、填空题(每小题3分,共24分)11如图所示,点为矩形边上一点,点在边的延长线上,与交于点,若,则_.12如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tanAOD=_.13某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各

4、自家庭一个月节约用水情况.如表: 节水量/m3 0.2 0.25 0.3 0.4 0.5 家庭数/个 2 4 6 7 1请你估计这400名同学的家庭一个月节约用水的总量大约是_m3.14已知,则的值是_15如图,O与抛物线交于两点,且,则O的半径等于_16在一个不透明的盒子中装有a个除颜色外完全相同的球,其中只有6个白球若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在20%左右,则a的值约为_17已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围

5、为_18如图,四边形ABCD中,ABCD,C90,AB1,CD2,BC3,点P为BC边上一动点,若APDP,则BP的长为_三、解答题(共66分)19(10分)中学生骑电动车上学的现象越来越受到社会的关注为此某媒体记者小李随机调查了城区若干名中学生家长对这种现象的态度(态度分为:A:无所谓;B:反对;C:赞成)并将调查结果绘制成图和图的统计图(不完整)请根据图中提供的信息,解答下列问题:(1)此次抽样调查中共调查了_名中学生家长;(2)将图形、补充完整;(3)根据抽样调查结果请你估计我市城区80000名中学生家长中有多少名家长持反对态度?20(6分)问题探究:(1)如图所示是一个半径为,高为4的

6、圆柱体和它的侧面展开图,AB是圆柱的一条母线,一只蚂蚁从A点出发沿圆柱的侧面爬行一周到达B点,求蚂蚁爬行的最短路程(探究思路:将圆柱的侧面沿母线AB剪开,它的侧面展开图如图中的矩形则蚂蚁爬行的最短路程即为线段的长)(2)如图所示是一个底面半径为,母线长为4的圆锥和它的侧面展开图,PA是它的一条母线,一只蚂蚁从A点出发沿圆锥的侧面爬行一周后回到A点,求蚂蚁爬行的最短路程(3)如图所示,在的条件下,一只蚂蚁从A点出发沿圆锥的侧面爬行一周到达母线PA上的一点,求蚂蚁爬行的最短路程21(6分)同时抛掷3枚硬币做游戏,其中1元硬币1枚,5角硬币两枚(1)求3枚硬币同时正面朝上的概率(2)小张、小王约定:

7、正面朝上按面值算,背面朝上按0元算3枚落地后,若面值和为1.5元,则小张获得1分;若面值和为1元,则小王得1分谁先得到10分,谁获胜,请问这个游戏是否公平?并说明理由22(8分)如图,直线yx+1与x轴,y轴分别交于A,B两点,抛物线yax2+bx+c过点B,并且顶点D的坐标为(2,1)(1)求该抛物线的解析式;(2)若抛物线与直线AB的另一个交点为F,点C是线段BF的中点,过点C作BF的垂线交抛物线于点P,Q,求线段PQ的长度;(3)在(2)的条件下,点M是直线AB上一点,点N是线段PQ的中点,若PQ2MN,直接写出点M的坐标23(8分)周老师家的红心猕猴桃深受广大顾客的喜爱,猕猴桃成熟上市

8、后,她记录了15天的销售数量和销售单价,其中销售单价y(元/千克)与时间第x天(x为整数)的数量关系如图所示,日销量P(千克)与时间第x天(x为整数)的部分对应值如下表所示: (1)求y与x的函数关系式,并写出自变量x的取值范围;(2)从你学过的函数中,选择合适的函数类型刻画P随x的变化规律,请直接写出P与x的函数关系式及自变量x的取值范围;(3)求出销售额W在哪一天达到最大,最大销售额是多少元? 24(8分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点,(1)求抛物线的解析式和对称轴;(2)是抛物线对称轴上的一点,求满足的值为最小的点坐标(请在图1中探索);(3)在第四象限

9、的抛物线上是否存在点,使四边形是以为对角线且面积为的平行四边形?若存在,请求出点坐标,若不存在请说明理由.(请在图2中探索)25(10分)如图,抛物线(a0)经过A(-1,0),B(2,0)两点,与y轴交于点C(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当ACP的周长最小时,求出点P的坐标;(3) 点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的RtDNM与RtBOC相似,若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由26(10分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为20

10、0元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意连接CD,根据勾股定理求出OD,根据正切的定义求出tanD,根据圆周角定理得到B=D,等量代换即可【详解】解:连接CD(圆周角定理CD过圆心A),在RtOCD中,CD=6,OC=2,则OD=,tanD=,由圆周角定理得B=D,则tanB=,故选:C【点睛】本题考查圆周角定理、锐角三角函数的定义,掌握在同圆或等圆中,同弧或等弧所对的圆周角相

11、等,都等于这条弧所对的圆心角的一半、熟记锐角三角函数的定义是解题的关键2、C【分析】先根据表格得出二次函数的图象与x轴的交点个数,再根据二次函数与一元二次方程的关系即可得出答案【详解】由表格可得,二次函数的图象与x轴有2个交点则其对应的一元二次方程根的个数为2故选:C【点睛】本题考查了二次函数的图象、二次函数与一元二次方程的关系,掌握理解二次函数的图象特点是解题关键3、B【解析】正三角形是轴对称能图形;平行四边形是中心对称图形;正五边形是轴对称图形;正六边形既是中心对称图形又是轴对称图形,中心对称图形的有2个故选B.4、A【解析】设,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得

12、到,即可求出【详解】轴,B两点纵坐标相同,设,则,故选A【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.5、A【分析】由作法得,根据圆周角定理得到ADBABE,再根据垂径定理的推论得到ADBC,BECEBC4,于是可判断RtABERtBDE,然后利用相似比求出AE,从而得到圆的直径和半径【详解】解:由作法得ACAB,ADBABE,AB为直径,ADBC,BECEBC4,BEABED90,而BDEABE,RtABERtBDE,BE:DEAE:BE,即4:3AE:4,AE,ADAE+DE+3,O的半径长为故选:A【点睛】本题

13、考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系也考查了圆周角定理6、B【解析】试题解析: 在中, 故选B.7、B【解析】由比例的基本性质,即两内项之积等于两外项之积即可得出结果【详解】解:3a5b,故选:B【点睛】此题主要考查比例的性质,解题的关键是熟知两内项之积等于两外项之积.8、B【解析】在1到9这9个自然数中,偶数共有4个,从这9个自然数中任取一个,是偶数的概率为:.故选B.9、D【分析】小于1的正数也可以利用科

14、学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:7.5忽米用科学记数法表示7.510-5米故选D【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【分析】利用圆心角的度数等于它所对的弧的度数得到BOC=50,利用垂径定理得到,然后根据圆周角定理计算ADC的度数【详解】的度数为50,BOC=50,半径OCAB,ADC=BOC=25故选B【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆

15、心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等也考查了垂径定理和圆周角定理二、填空题(每小题3分,共24分)11、【分析】设,则,与的交点为,首先根据同角的余角相等得到,可判定,利用对应边成比例推出,再根据平行线分线段成比例推出,进而求得,最后再次根据平行线分线段成比例得到.【详解】设,则,与的交点为,.,又,.,DMCE.,.又AMCE.故答案为:.【点睛】本题考查了矩形的性质,相似三角形的判定和性质,以及平行线分线段成比例,利用相似三角形的性质求出DF是解题的关键.12、1【解析】首先连接BE,由题意易得BF=CF,ACOBKO,然后由相似三角形的对应边成比例,易

16、得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在RtOBF中,即可求得tanBOF的值,继而求得答案【详解】如图,连接BE,四边形BCEK是正方形,KF=CF=CK,BF=BE,CK=BE,BECK,BF=CF,根据题意得:ACBK,ACOBKO,KO:CO=BK:AC=1:3,KO:KF=1:1,KO=OF=CF=BF,在RtPBF中,tanBOF=1,AOD=BOF,tanAOD=1故答案为1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用13、130【解析】先计算这20名同学各自家庭一个月的节

17、水量的平均数,即样本平均数,然后乘以总数400即可解答【详解】20名同学各自家庭一个月平均节约用水是:(0.22+0.254+0.36+0.47+0.51)20=0.325(m3),因此这400名同学的家庭一个月节约用水的总量大约是:4000.325=130(m3),故答案为130.【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可,关键是求出样本的平均数14、【分析】由可设a=k,b=3k,代入中即可.【详解】解:,设a=k,b=3k,代入中,=.故答案为:.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型15、【分析】连接OA,AB与y

18、轴交于点C,根据AB2,可得出点A,B的横坐标分别为1,1再代入抛物线即可得出点A,B的坐标,再根据勾股定理得出O的半径【详解】连接OA,设AB与y轴交于点C,AB2,点A,B的横坐标分别为1,1O与抛物线交于A,B两点,点A,B的坐标分别为(1,),(1,),在RtOAC中,由勾股定理得OA,O的半径为故答案为:.【点睛】本题考查了垂径定理、勾股定理以及二次函数图象上点的特征,求得点A的纵坐标是解题的关键16、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在20%左右得到比例关系,列出方程求解即可【详解】由题意可得,100%20%,解得

19、,a1故答案为1【点睛】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据红球的频率得到相应的等量关系17、0m132【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【详解】把点(12,5)代入直线y=kx得,5=12k,k=512;由y=512x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=512x+m(m0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125m,A(125m,0),B(0,m),即OA=125m,OB=m,在RtOAB

20、中,AB=OA2+OB2=125m2+m2=135m,过点O作ODAB于D,SABO=12ODAB=12OAOB,12OD135m=12125mm,m0,解得OD=1213m,由直线与圆的位置关系可知1213m 6,解得m132,故答案为0m132.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.18、1或2【分析】设BP=x,则PC=3-x,根据平行线的性质可得B=90,根据同角的余角相等可得CDP=APB,即可证明CDPBPA,根据相似三角形的性质列方程求出x的值即可得答案

21、【详解】设BP=x,则PC=3-x,ABCD,C90,B=180-C=90,B=C,APDP,APB+DPC=90,CDP+DPC=90,CDP=APB,CDPBPA,AB1,CD2,BC3,解得:x1=1,x2=2,BP的长为1或2,故答案为:1或2【点睛】此题考查的是相似三角形的判定及性质,掌握相似三角形的对应边成比例列方程是解题的关键三、解答题(共66分)19、(1)200;(2)详见解析;(3)48000【分析】(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)总数减去A、B两种态度的人数即可得到C态度的人数;(3)用家长总数乘以持反对态度的百分比即可【详解】解:(1)调

22、查家长总数为:5025%=200人;故答案为:200.(2)持赞成态度的学生家长有200-50-120=30人,B所占的百分比为:;C所占的百分比为:;故统计图为:(3)持反对态度的家长有:8000060%=48000人【点睛】本题考查了用样本估计总体和扇形统计图的知识,解题的关键是从两种统计图中整理出有关信息20、(1)蚂蚁爬行的最短路程为1; (2)最短路程为;(3)蚂蚁爬行的最短距离为【分析】(1)蚂蚁爬行的最短路程为圆柱侧面展开图即矩形的对角线的长度,由勾股定理可求得;(2)蚂蚁爬行的最短路程为圆锥展开图中的AA的连线,可求得PAA是等边三角形,则AA=PA=4;(3)蚂蚁爬行的最短路

23、程为圆锥展开图中点A到PA的距离【详解】(1)由题意可知:在 中,即蚂蚁爬行的最短路程为1 (2)连结则的长为蚂蚁爬行的最短路程,设为圆锥底面半径,为侧面展开图(扇形)的半径, 则由题意得:即是等边三角形最短路程为 (3)如图所示是圆锥的侧面展开图,过作于点则线段的长就是蚂蚁爬行的最短路程 在RtACP中,P=60,PAC=30PC=PA=4=2 AC=蚂蚁爬行的最短距离为 【点睛】本题考查了勾股定理,矩形的性质,圆周长公式,弧长公式,等边三角形的判定和性质,直角三角形的性质,掌握相关公式和性质定理是本题的解题关键21、(1);(2)公平,见解析【分析】(1)用列表法或树状图法表示出所有可能出

24、现的结果,进而求出3枚硬币同时正面朝上的概率(2)求出小张获得1分;小王得1分的概率,再判断游戏的公平性【详解】解:(1)用树状图表示所有可能出现的情况如下:P(3枚硬币同时正面朝上);(2)公平,所有面值出现的情况如图所示:P(小张获得1分),P(小王得1分),P(小张获得1分)P(小王得1分),因此对于他们来说是公平的【点睛】本题考查了树状图和概率计算公式,解决本题的关键是正确理解题意,熟练掌握树状图的画法和概率的计算公式.22、(1)yx2+2x+1;(2)5;(3)M(,)或(,)【分析】(1)先求出点B坐标,再将点D,B代入抛物线的顶点式即可;(2)如图1,过点C作CHy轴于点H,先

25、求出点F的坐标,点C的坐标,再求出直线CM的解析式,最后可求出两个交点及交点间的距离;(3)设M(m,m+1),如图2,取PQ的中点N,连接MN,证点P,M,Q同在以PQ为直径的圆上,所以PMQ90,利用勾股定理即可求出点M的坐标【详解】解:(1)在yx+1中,当x0时,y1,B(0,1),抛物线yax2+bx+c过点B,并且顶点D的坐标为(2,1),可设抛物线解析式为ya(x+2)21,将点B(0,1)代入,得,a,抛物线的解析式为:y(x+2)21x2+2x+1;(2)联立,解得,或,F(5,),点C是BF的中点,xC,yC,C(,),如图1,过点C作CHy轴于点H,则HCB+CBH90,

26、又MCH+HCB90,CBHMCH,又CHBMHC90,CHBMHC,即,解得,HM5,OMOH+MH+5,M(0,),设直线CM的解析式为ykx+,将C(,)代入,得,k2,yCM2x+,联立2x+x2+2x+1,解得,x1,x2,P(,5+),Q(,5+),PQ5;(3)点M在直线AB上,设M(m,m+1),如图2,取PQ的中点N,连接MN,PQ2MN,NMNPNQ,点P,M,Q同在以PQ为直径的圆上,PMQ90,MP2+MQ2PQ2,+ (5)2,解得,m1,m2,M(,)或(,)【点睛】本题考查了待定系数法求解析式,两点间的距离,勾股定理等,解题关键是需要有较强的计算能力23、(1);

27、(2)(x取整数);(3)第10天销售额达到最大,最大销售额是4500元【分析】(1)是分段函数,利用待定系数法可得y与x的函数关系式;(2)从表格中的数据上看,是成一次函数,且也是分段函数,同理可得p与x的函数关系式;(3)根据销售额=销量销售单价,列函数关系式,并配方可得结论【详解】解:(1) 当时,设(),把点(0,14),(5,9)代入,得 ,解得: ,;当时, ,(x取整数); (2)(x取整数); (3)设销售额为元, 当时,=,当时,; 当时, ,当时,; 当时,当时,综上所述:第10天销售额达到最大,最大销售额是4500元;【点睛】本题考查了二次函数的性质在实际生活中的应用最大

28、利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案24、(1),函数的对称轴为:;(2)点;(3)存在,点的坐标为或【分析】根据点的坐标可设二次函数表达式为:,由C点坐标即可求解;连接交对称轴于点,此时的值为最小,即可求解;,则,将该坐标代入二次函数表达式即可求解【详解】解:根据点,的坐标设二次函数表达式为:,抛物线经过点,则,解得:,抛物线的表达式为: ,函数的对称轴为:;连接交对称轴于点,此时的值为最小,设BC的解析式为:,将点的坐标代入一次函数表达式:得:解得:直线的表达式为:,当时,故点; 存在,理由:四边形是以为对角线且面积为的平行四边形,则 ,点在第四象限,故:则,将该坐标代入二次函数表达式得:,解得:或,故点的坐标为或【点睛】本题考查二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中,求线段和的最小值,采

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论