江苏省东台市第一联盟2022-2023学年数学九年级第一学期期末调研模拟试题含解析_第1页
江苏省东台市第一联盟2022-2023学年数学九年级第一学期期末调研模拟试题含解析_第2页
江苏省东台市第一联盟2022-2023学年数学九年级第一学期期末调研模拟试题含解析_第3页
江苏省东台市第一联盟2022-2023学年数学九年级第一学期期末调研模拟试题含解析_第4页
江苏省东台市第一联盟2022-2023学年数学九年级第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图是一根空心方管,它的俯视图是( )ABCD2如图,ABC中,C=90,AC=3,B=30,点P是BC边上的动点,则AP的长不可能是( )A3.5B4.

2、2C5.8D73已知抛物线的解析式为y=(x-2)2+1,则这条抛物线的顶点坐标是( ).A(2,1) B(2,1) C(2,1) D(1,2)4如图,AB与O相切于点A,BO与O相交于点C,点D是优弧AC上一点,CDA27,则B的大小是( )A27B34C36D545要得到函数y2(x1)23的图像,可以将函数y2x2的图像( )A向左平移1个单位长度,再向上平移3个单位长度B向左平移1个单位长度,再向下平移3个单位长度C向右平移1个单位长度,再向上平移3个单位长度D向右平移1个单位长度,再向下平移3个单位长度6一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE重合,顶点B、C、D在

3、一条直线上)将三角尺DEF绕着点F按逆时针方向旋转n后(0n180 ),如果BADE,那么n的值是()A105B95C90D757如图,在扇形中,则阴影部分的面积是( )ABCD8如图,已知和是以点为位似中心的位似图形,且和的周长之比为,点的坐标为,则点的坐标为( )ABCD9如图,A,B,C,D是O上的四个点,弦AC,BD交于点P若AC40,则BPC的度数为( )A100B80C50D4010如图点D、E分别在ABC的两边BA、CA的延长线上,下列条件能判定EDBC的是( )A;B;C;D二、填空题(每小题3分,共24分)11如图,抛物线y(x+1)(x9)与坐标轴交于A、B、C三点,D为顶

4、点,连结AC,BC点P是该抛物线在第一象限内上的一点过点P作y轴的平行线交BC于点E,连结AP交BC于点F,则的最大值为_12分解因式:=_.13抛物线y3(x1)2+2的开口向_,对称轴为_,顶点坐标为_14如图,在菱形ABCD中,B60,AB2,M为边AB的中点,N为边BC上一动点(不与点B重合),将BMN沿直线MN折叠,使点B落在点E处,连接DE、CE,当CDE为等腰三角形时,BN的长为_15如图,以点O为位似中心,将四边形ABCD按1:2放大得到四边形ABCD,则四边形ABCD与四边形ABCD的面积比是_16如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_17如图,

5、BCy轴,BCOA,点A、点C分别在x轴、y轴的正半轴上,D是线段BC上一点,BDOA2,AB3,OAB45,E、F分别是线段OA、AB上的两动点,且始终保持DEF45,将AEF沿一条边翻折,翻折前后两个三角形组成的四边形为菱形,则线段OE的值为_18写出经过点(0,0),(2,0)的一个二次函数的解析式_(写一个即可)三、解答题(共66分)19(10分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转已知连接杆BC的长度为20cm,BD cm,压柄与托板的长度相等(1)当托板与压

6、柄的夹角ABC30时,如图点E从A点滑动了2cm,求连接杆DE的长度(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图求这个过程中,点E滑动的距离(结果保留根号)20(6分)前苏联教育家苏霍姆林斯曾说过:“让学生变聪明的方法,不是补课,不是増加作业量,而是阅读,阅读,再阅读”.课外阅读也可以促进我们养成终身学习的习惯.云南某学校组织学生利用课余时间多读书,读好书,一段时间后,学校对部分学生每周阅读时间进行调查,并绘制了不完整的频数分布表和频数分布直方图,如图所示:时间(时)频数百分比1010%25mn30%a20%1515%根据图表提供的信息,回答下列问题:(1)填空:_,_;(2)请补全

7、频数分布直方图;(3)该校共有3600名学生,估计学生每周阅读时间x(时)在范围内的人数有多少人?21(6分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)20 20 28 15 20 25 30 20 12 1330 25 15 20 10 10 20 17 24 26“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:频数分布表 分组频数(单位:天)10 x15415x20320 x25a25x30b30 x352合计20请根据以上信息回答下列问题:(1)在频

8、数分布表中,a的值为 ,b的值为 ,并将频数分布直方图补充完整;(2)求这20天访问王老师工作室的访问人次的平均数22(8分)解下列方程:配方法23(8分)改善小区环境,争创文明家园如图所示,某社区决定在一块长()16,宽()9的矩形场地上修建三条同样宽的小路,其中两条与平行,另一条与平行,其余部分种草要使草坪部分的总面积为112,则小路的宽应为多少?24(8分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)1101

9、0080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?25(10分)方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC的顶点均在格点上,且三个顶点的坐标分别为A(1,4),B(5,4),C(4,1)(1)画出ABC关于原点O对称的A1B1C1,并写出点C1 的坐标;(1)作出ABC绕着点A逆时针方向旋转90后得到的AB1C126(10分)已知:如图,B,C,D三点在 上,PA是钝角ABC的高线,PA的延长线与线段CD交于点E.(1)请在图中找出一个与CAP相等的角,

10、这个角是 ;(2)用等式表示线段AC,EC,ED之间的数量关系,并证明.参考答案一、选择题(每小题3分,共30分)1、B【分析】俯视图是从物体的上面看,所得到的图形:注意看到的用实线表示,看不到的用虚线表示【详解】如图所示:俯视图应该是故选:B【点睛】本题考查了作图三视图,解题的关键是掌握看到的用实线表示,看不到的用虚线表示2、D【详解】解:根据垂线段最短,可知AP的长不可小于3ABC中,C=90,AC=3,B=30,AB=1,AP的长不能大于1故选D3、B【解析】根据顶点式y=(x-h)2+k的顶点为(h,k),由y=(x-2)2+1为抛物线的顶点式,顶点坐标为(2,1)故选:B4、C【分析

11、】由切线的性质可知OAB=90,由圆周角定理可知BOA=54,根据直角三角形两锐角互余可知B=36【详解】解:AB与O相切于点A,OABAOAB=90CDA=27,BOA=54B=90-54=36故选C考点:切线的性质5、C【解析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到【详解】解:y2(x1)23的顶点坐标为(1,3),y=2x2的顶点坐标为(0,0),将抛物线y=2x2向右平移1个单位,再向上平移3个单位,可得到抛物线y2(x1)23故选:C【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标6、A【分析】画出图形求解即可【详解】解:

12、三角尺DEF绕着点F按逆时针方向旋转n后(0n180 ),BADE,旋转角90+4530105,故选:A【点睛】本题考查了旋转变换,平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.7、D【分析】利用阴影部分的面积等于扇形面积减去的面积即可求解.【详解】 = 故选D【点睛】本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键.8、A【分析】设位似比例为k,先根据周长之比求出k的值,再根据点B的坐标即可得出答案【详解】设位似图形的位似比例为k则和的周长之比为,即解得又点B的坐标为点的横坐标的绝对值为,纵坐标的绝对值为点位于第四象限点的坐标为故选:A【点睛】

13、本题考查了位似图形的坐标变换,依据题意,求出位似比例式解题关键9、B【分析】根据同一个圆中,同弧所对的圆周角相等,可知,结合题意求的度数,再根据三角形的一个外角等于其不相邻两个内角和解题即可.【详解】故选B【点睛】本题考查圆的综合,其中涉及圆周角定理、三角形外角性质,是常见考点,熟练掌握相关知识是解题关键.10、D【分析】根据选项选出能推出,推出或的即可判断【详解】解:、,不符合两边对应成比例及夹角相等的相似三角形判定定理.无法判断与相似,即不能推出,故本选项错误;、,即不能推出,故本选项错误;、由可知,不能推出,即不能推出,即不能推出两直线平行,故本选项错误;、,故本选项正确;故选:【点睛】

14、本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似二、填空题(每小题3分,共24分)11、【分析】根据抛物线的解析式求得A、B、C的坐标,进而求得AB、BC、AC的长,根据待定系数法求得直线BC的解析式,作PNBC,垂足为N先证明PNEBOC,由相似三角形的性质可知PN=PE,然后再证明PFNAFC,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值【详解】抛物线y=(x+1)(x9)与坐标轴交于A、B、C三点,A(1,0),B(9,0),令x=0,则y=1,C(0,1),BC,设

15、直线BC的解析式为y=kx+b将B、C的坐标代入得:,解得k=,b=1,直线BC的解析式为y=x+1设点P的横坐标为m,则纵坐标为(m+1)(m9),点E(m,m+1),PE=(m+1)(m9)(m+1)=m2+1m作PNBC,垂足为NPEy轴,PNBC,PNE=COB=90,PEN=BCOPNEBOC=PN=PE=(-m2+1m)AB2=(9+1)2=100,AC2=12+12=10,BC2=90,AC2+BC2=AB2BCA=90,又PFN=CFA,PFNAFC=m2+m=(m)2+,当m时,的最大值为故答案为:【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数图象上点

16、的坐标特征、一次函数的解析式、等腰三角形的性质、勾股定理的应用以及相似三角形的证明与性质,求得与m的函数关系式是解题的关键12、【解析】提取公因式法和公式法因式分解【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式因此,13、下 直线x1 (1,2) 【分析】根据y=a(x-h)2+k的性质即可得答案【详解】-30,抛物线的开口向下,y3(x1)2+2是二次函数的顶点式,该抛物线的对称轴是直线x1,顶点坐标为(1,2),故答案为:下,直线x1,(1,2)【点睛】本题主要考查了二次函数

17、的性质,熟练掌握二次函数的三种形式及性质是解题关键14、或1【分析】分两种情况:当DE=DC时,连接DM,作DGBC于G,由菱形的性质得出AB=CD=BC=1,ADBC,ABCD,得出DCG=B=60,A=110,DE=AD=1,求出DG=CG=,BG=BC+CG=3,由折叠的性质得EN=BN,EM=BM=AM,MEN=B=60,证明ADMEDM,得出A=DEM=110,证出D、E、N三点共线,设BN=EN=xcm,则GN=3-x, DN=x+1,在RtDGN中,由勾股定理得出方程,解方程即可;当CE=CD上,CE=CD=AD,此时点E与A重合,N与点C重合,CE=CD=DE=DA,CDE是等

18、边三角形,BN=BC=1(含CE=DE这种情况);【详解】解:分两种情况:当DEDC时,连接DM,作DGBC于G,如图1所示:四边形ABCD是菱形,ABCDBC1,ADBC,ABCD,DCGB60,A110,DEAD1,DGBC,CDG906030,CGCD1,DGCG,BGBC+CG3,M为AB的中点,AMBM1,由折叠的性质得:ENBN,EMBMAM,MENB60,在ADM和EDM中,ADMEDM(SSS),ADEM110,MEN+DEM180,D、E、N三点共线,设BNENx,则GN3x,DNx+1,在RtDGN中,由勾股定理得:(3x)1+()1(x+1)1,解得:x,即BN,当CEC

19、D时,CECDAD,此时点E与A重合,N与点C重合,如图1所示:CECDDEDA,CDE是等边三角形,BNBC1(含CEDE这种情况);综上所述,当CDE为等腰三角形时,线段BN的长为或1;故答案为:或1【点睛】本题主要考查了折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理,掌握折叠变换的性质、菱形的性质、全等三角形的判定与性质、勾股定理是解题的关键.15、1:1【解析】根据位似变换的性质定义得到四边形ABCD与四边形ABCD相似,根据相似多边形的性质计算即可【详解】解:以点O为位似中心,将四边形ABCD按1:2放大得到四边形ABCD,则四边形ABCD与四边形ABCD相似,相似比为

20、1:2,四边形ABCD与四边形ABCD的面积比是1:1,故答案为:1:1【点睛】本题考查的是位似变换,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形16、【分析】根据轴对称,可以求得使得的周长最小时点的坐标,然后求出点到直线的距离和的长度,即可求得的面积,本题得以解决【详解】联立得,解得,或,点的坐标为,点的坐标为,作点关于轴的对称点,连接与轴的交于,则此时的周长最小,点的坐标为,点的坐标为,设直线的函数解析式为,得,直线的函数解析式为,当时,即点的坐标为,将代入直线中,得,直线与轴的夹角是,点到直线的距离是:,的面积是:,故答案为【点

21、睛】本题考查二次函数的性质、一次函数的性质、轴对称最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答17、6或6或93【分析】可得到DOEEAF,OEDAFE,即可判定DOEEAF,分情况进行讨论:当EFAF时,AEF沿AE翻折,所得四边形为菱形,进而得到OE的长;当AEAF时,AEF沿EF翻折,所得四边形为菱形,进而得到OE的长;当AEEF时,AEF沿AF翻折,所得四边形为菱形,进而得到OE的长【详解】解:连接OD,过点BHx轴,沿着EA翻折,如图1:OAB45,AB3,AHBHABsin45=,CO,BDOA2,BD2,OA8,BC8,CD6;四边形FENA是菱形,FAN90,

22、四边形EFAN是正方形,AEF是等腰直角三角形,DEF45,DEOA,OECD6;沿着AF翻折,如图2:AEEF,B与F重合,BDE45,四边形ABDE是平行四边形 AEBD2,OEOAAE826;沿着EF翻折,如图3:AEAF,EAF45,AEF是等腰三角形,过点F作FMx轴,过点D作DNx轴,EFMDNE,NE3,OE6+393;综上所述:OE的长为6或6或93,故答案为6或6或93【点睛】此题主要考查函数与几何综合,解题的关键是熟知等腰三角形的性质、平行四边形、菱形及正方形的性质,利用三角函数、勾股定理及相似三角形的性质进行求解.18、yx2+2x(答案不唯一)【解析】设此二次函数的解析

23、式为yax(x+2),令a1即可【详解】抛物线过点(0,0),(2,0),可设此二次函数的解析式为yax(x+2),把a1代入,得yx2+2x故答案为yx2+2x(答案不唯一)【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一三、解答题(共66分)19、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm【解析】(1)如图1中,作DHBE于H求出DH,BH即可解决问题 (2)解直角三角形求出BE即可解决问题【详解】(1)如图1中,作DHBE于H在RtBDH中,DHB=90,BD=4cm,ABC=30,DH=BD=2(cm),BH=DH=6(cm),AB

24、=CB=20cm,AE=2cm,EH=20-2-6=12(cm),DE=2(cm)(2)在RtBDE中,DE=2,BD=4,DBE=90,BE=6(cm),这个过程中,点E滑动的距离(18-6)cm【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识20、(1)25%,30;(2)见解析;(3)1800人【分析】(1)根据百分比之和等于1求出m的值,由0 x3的频数及频率求出总人数,总人数乘以对应的百分比求出n的值;(2)总人数乘以对应的百分比求出a的值,从而补全直方图;(3)总人数乘以对应的百分比可得答案【详解】(1)抽取的学生人数为:(人);,.故答案为:25%,30; (2)

25、,补全频数分布直方图如解图所示;(3)(人),答:估计学生每周阅读时间x(时)在范围内的人数有1800人.【点睛】错因分析:第(1)问,未搞清楚各组百分比之和等于1;各组频数之和等于抽取的样本总数;第(2)问,不会利用各组的频数等于样本总数乘各组所占的百分比来计算,第(3)问,样本估计总体时,忽略了要用总人数乘时间段“69和912”这两个时间段所占的百分比之和.21、(1)7、1,直方图见解析;(2)20人次【分析】(1)根据题目所给数据即可得出a、b的值,从而补全直方图;(2)根据平均数的概念列式求解可得【详解】解:(1)由题意知20 x25的天数a7,25x30的天数b1,补全直方图如下:

26、故答案为:7、1(2)这20天访问王老师工作室的访问人次的平均数为:答:这20天访问王老师工作室的访问人次的平均数为20人次【点睛】此题考查了频数(率)分布直方图,平均数,正确识别统计图及统计表中的数据是解本题的关键22、;或【解析】试题分析:(1)先把常数项移到方程的右边,再把方程两边都加上一次项系数的一半的平方,把方程左边写完全平方的形式,然后用直接开平方法求解;(2)把方程右边的项移到左边,然后用因式分解法求解.试题解析:,即,则,;,则或,解得:或23、小路的宽应为1【解析】设小路的宽应为x米,那么草坪的总长度和总宽度应该为(16-2x),(9-x);那么根据题意得出方程,解方程即可【详解】解:设小路的宽应为x米,根据题意得:,解得:,不符合题意,舍去,答:小路的宽应为1米【点睛】本题考查一元二次方程的应用,弄清“草坪的总长度和总宽度”是解决本题的关键24、(1)y2x+200 (40 x60);(2)售价为60元时获得最大利润,最大利润是1600元.【分析】(1)待定系数法求解可得;(2)根据“总利润每千克利润销售量”可得函数解析式,将其配方成顶点式即可得最值情况【详解】解:(1)设ykx+b,将(50,100)、(60,80)代入,得:,解得:,y2x+200 (40 x60);(2)w(x40)(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论