励磁控制对电力系统稳定的影响_第1页
励磁控制对电力系统稳定的影响_第2页
励磁控制对电力系统稳定的影响_第3页
励磁控制对电力系统稳定的影响_第4页
励磁控制对电力系统稳定的影响_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、励磁控制对电力系统稳定的影响摘要:它励可控桂励磁系统主要的优点是在发电站出口附近发生短路故障时, 强励能力强,有利于提高系统的暂态稳定水平,在故障切除时间比较长、系统 容量相对小的50、60年代这一优点是很突出的。但是,随着电力系统装机容量 的增大,快速保护的应用,故障切除时间的缩短,它励可控硅励磁系统的优势 已不是很明显关键词:励磁控制电力系统稳定影响第一章:励磁系统概述第一节:同步发电机励磁系统介绍它励可控硅励磁系统主要的优点是在发电站出口附近发生短路故障时,强 励能力强,有利于提高系统的暂态稳定水平,在故障切除时间比较长、系统容 量相对小的50、60年代这一优点是很突出的。但是,随着电力

2、系统装机容量的 增大,快速保护的应用,故障切除时间的缩短,它励可控硅励磁系统的优势已 不是很明显。自并励可控硅励磁系统的优点是结构简单,元部件少,其励磁电 源来自机端变压器,无旋转部件,运行可靠性高,维护工作量小。且由于变压 器容量的变更比交流励磁机的变更更简单、容易,因而更经济,更容易满足不 同电力系统、不同电站的暂态稳定水平对励磁系统强励倍数的不同要求。它励可控硅励磁系统的缺点是由于交流励磁机是非标准产品,难以标准化, 即使是同容量的发电机,尤其是水轮发电机,由于水头、转速的不同,强励倍数 的不同,交流励磁机的容量、尺寸也不同,因此,价格较自并励可控娃励磁系 统贵。另外它励可控硅励磁系统与

3、自并励可控硅励磁系统相比较,元部件多, 又有旋转部件,可靠性相对较低,运行维护量大。自并励可控硅励磁系统的缺 点是它的励磁电源来自发电机端,受发电机机端电压变化的影响。当发电机机 端电压下降时其强励能力下降,对电力系统的暂态稳定不利。不过随着电力系 统中快速保护的应用,故障切除时间的缩短,且&并励可控硅励磁系统可以通 过变压器灵活地选择强励倍数,可以较好地满足电力系统暂态稳定水平的要求。综合考虑技术和经济两方面因素,推荐在发电机组采用自并励快速励磁方 式。为验证其正确性,通过稳定计算研究了满发时发电机组采用自并励励磁方 式的稳定情况,计算结果表明,发电机组采用g并励励磁方式可满足系统稳定 的要

4、求,但必须同时加装电力系统稳定器(PSS)。直流机励磁方式是采用直流发电机作为励磁电源,供给发电机转子回路的 励磁电流。其中直流发电机称为直流励磁机,其优点是与无励磁机系统比较, 厂用电率较低。缺点是直流励磁机存在整流环,功率过大时制造有一定困难, 100MW以上汽轮发电机组难以采用。直流励磁机一般与发电机同轴,励磁电流 通过换向器和电刷供给发电机转子磁电流,形成有碳刷励磁。直流机励磁方式 又可分为自励式和它励式。专门用来给同步发电机转子回路供电的直流发电机 系统称为直流励磁机系统,它励直流励磁方式,就是在它励系统中增加副励磁机,用来供给励磁机的 励磁电流,副励磁机FL为主励磁机几的励磁机,副

5、励磁机与主励磁机均与发 电机同轴。与自励直流励磁机系统比较,自励与他励的区别是对主励磁机的励 磁方式而言的。他励直流励磁机系统比自励励磁机系统多用了一台副励磁机, 所用设备增多,占用空间大,投资大。但是提高了励磁机的电压增长速度,因 而减小了励磁机的时间常数。他励直流励磁机系统一般只用在水轮发电机组上。自励直流励磁机系统原理接线图他励直流励磁机系统原理接线阁采用直流励磁供电的励磁方式,在过去的十几年间,是同步发电机的主耍 励磁方式。目前大多数中小型同步发电机仍采用这种励磁方式。长期的运行经 验证明,这种励磁方式具有独立的,不受外系统干扰的励磁电源。励磁可靠性 高,且调节方便的优点。但换向器和电

6、刷的维护工作量大。近年来,随着电力 生产的发展,同步发电机的容量愈来愈大,要求励磁功率也相应增大,而大容 量的直流励磁机无论在换向问题或电机的结构上都受到限制。因此,直流励磁 方式愈来愈不能满足要求。目前,在100MW及以上发电机上很少采用。我厂为 保证励磁系统的高可靠性而配备的备用励磁机就是它励直流机励励磁方式。第二节:交流机励磁方式用直流机作为励磁电源,不仅维护困难,而且在应用上也有限制。采用交 流机励磁方式,由于励磁机容量相对较小,只占同步发电机容量的0.30.5,且时间常数也较小(即响应速度快)。因此在现代电力系统中的大容量发电机 (如200MW、300MW等),都采用交流励磁机系统。

7、现在大容量的发电机,要求 励磁系统有很高的可靠性和很快的响应速度。而直流励磁机系统存在的整流环 是安全运行的薄弱环节,容量不能制造的很大,所以100MW及以上容量机组都 用交流励磁机系统。交流励磁机系统的核心设备是交流励磁机,其容量相对较 小,只占同步发电机容量的0.3%0.5%。由于要求其响应速度很快,所以大型 机组的交流励磁机系统一般采用他励方式,既有主励磁机,也有副励磁机。交流励磁机系统是采用专门的交流励磁机代替了直流励磁机,并与发电机 同轴。它运行发出的交流电,经整流电路后变成直流,供给发电机励磁。第三节:其他励磁方式1. 1自励交流励磁机系统自励交流励磁机的励磁电源从本机出口电压直接

8、获得。为了维持端电压的 恒定用可控娃整流元件。因此,自动励磁调节器的调整电流输出至何处向发电 机转子送电:方案中,自励的交流励磁机经可控硅整流桥 B向发电机转子送电,自动励 磁调节器控制此可控硅的导通角,调整其输出电流,以维持发电机端电压的恒 定。交流励磁机本身则经过令一个反馈回路,由自身的恒压单元来保证其交流 励磁电压的恒定。由丁 -这种方案完全不考虑励磁机的时间常数,因而,励磁电 压响应速度比较快,时间常数小,但是,对其容量要求较大。1.2无刷励磁系统在他励和自励交流励磁机系统中,发电机的励磁电流全部由可控桂(或二 极管)供给,而可控硅(或二极管)是静止的故称为静止励磁。在静止励磁系 统中

9、要经过滑环才能向旋转的发电机转子提供励磁电流。滑环是一种转动接触 元件。随着发电机容 量的快速增大,巨型 机组的出现,转子电 流大大增加 (3000 5000安培),转子滑环中通过如此大的电流,滑环的数量就要增加很 多。为了防止机组运行当中个别滑环过热,每个滑环必须分担同样大小的电流 为了提高励磁系统的可靠性取消滑环这一薄弱环节,使整个励磁系统都无转动 接触的元件,就产生了无刷励磁系统,如下图所示:无刷励磁系统方案之一副励磁机FL是一个永磁式中频发电机,其永磁部分画在旋转部分的虚线框 内。为实现无刷励磁,主励磁机与一般的同步发电机的工作原理基本相同,只 是电枢是旋转的。其发出的三相交流电经过二

10、极管整流后,直接送到发电机的 转子回路作励磁电源,因为励磁机的电枢与发电机的转子同轴旋转,所以它们 之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁。主励磁机的励磁绕组几LQ是静止的,即主励磁机是一个磁极静止,电枢旋 转的同步发电机。静止的励磁机励磁绕组便于自动励磁调节器实现对励磁机输 出电流的控制,以维持发电机端电压保持恒定。无刷励磁系统方案之二在方案一中,考虑到励磁机励磁绕组LLQ的时间常数,其响应速度较慢。 为了提高响应速度可以采用方案二,就是将可控硅整流桥装设旋转部分,代替 方案一旋转部件中的二极管整流桥。方案二中由中频副励磁机 ZPF供电给交流 主励磁机几的直流励磁绕组几

11、LQ。可控硅的触发脉冲由同轴旋转的触发脉冲 发生器PG供给。PG也是一个由多相绕组组成的电枢,它的磁场由d、q两个互 相垂直的绕组的磁场合成,因此当d、q磁场的大小作各种不同的变化时,PG 的合成磁场(相对几LQ磁场)就在作不同角度的转变,转变的范围为 90。 这样就使得PG的触发脉冲与主励磁机几各相交流电压之间,产生不同的相角 变化,从而控制主励磁机送至发电机转子绕组的励磁电流的大小,以达到维持 发电机端电压恒定的目的。在方案二中,不必考虑主励磁机励磁绕组几LQ时间常数的影响,所以其响 应速度比方案一快,其自动励磁调节器的输出与其他励磁系统不同,显得较为复杂一些,但并不难实现。总的来说,其优

12、点是:革除了滑环和碳刷等转动接 触部分。其缺点是:在监视与维修上有其不方便之处。由于与转子回路直接连 接的元件都是旋转的,因而转子回路的电压电流都不能用普通的直流电压表、 直流电流表直接进行监视,转子绕组的绝缘情况也不便监视,二极管与可控硅 的运行状况,接线是否开脱,熔丝是否熔断等等都不便监视。因而在运行维护 上不太方便。但随着科技的发展,监视问题正在得到逐步解决。1.3无励磁机发电机自并励系统励磁机本身就是可靠性不高的元件,可以说它是励磁系统的薄弱环节之一, 因励磁机故障而迫使发电机退出运行的事故并非鲜见,故相应地出现了不用励 磁机的励磁方案。如下图所示:发电机的励磁电源直接由发电机端电压获

13、得, 经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电 机端电压恒定的励磁方式,是无励磁机的发电机自励系统。最简单的发电机自 励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制 励磁电流的大小,称为自并励可控硅励磁系统,简称自并励系统。自并励系统 中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而 采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。下图为无 励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机 端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元 件SCR由自动励磁调节器控制。系

14、统起励时需要令加一个起励电源。无励磁机发电机自并励系统框图无励磁机发电机自并励系统的优点是:不需要同轴励磁机,系统简单,运 行可靠性高;缩短了机组的长度,减少了基建投资及有利于主机的检修维护; 由可控硅元件直接控制转子电压,可以获得较快的励磁电压响应速度;由发电 机机端获取励磁能量,与同轴励磁机励磁系统相比,发电机组甩负荷时,机组 的过电压也低一些。其缺点是:发电机出口近端短路而故障切除时间较长时, 缺乏足够的强行励磁能力,对电力系统稳定的影响不如其它励磁方式有利。由于以上特点,使得无励磁机发电机自并励系统在国内外电力系统大型发 电机组的励磁系统中受到相当重视。在发电机与系统间由升压变压器的单

15、元接 线和抽水蓄能机组等励磁系统中得到实际应用。随着微机励磁调节器的应用,氧化锌非线性灭磁电阻的研制成功及大功率 晶闸管及晶体管的广泛应用,提高了发电机励磁系统的可靠性,较大地改善了 励磁系统静态和动态品质,大大提高了系统的技术性能指标。在诸多励磁系统中,直接励磁机维护困难,调节器响应时间长达15s, 动态性能差,当空载起励时,电压超调量大,频率特性差;他励可控娃励磁系 统需装设交流励磁机,并要求厂房高度高,当其用于慢速水轮机时,交流励磁 机体质量大、尺寸大、维修工作量大。20世纪7080年代,发电厂开始用自 复励及自并励的可控硅励磁系统,由于它们均属于快速励磁系统,动态性能优 良,尤其是带有

16、微型计算机励磁调节器的自并激静止励磁系统在发电厂中得以广泛的应用。自并激励磁系统接线简单、设备少、造价低、占地面积小、无转 动部件并维护简单,是快速响应系统。尤其是水电站往往远离负荷中心的地区, 为提高输电的稳定性,对励磁系统耍求能快速响应,而自并激励磁系统恰好能 满足这个要求。1.4自励交流励磁机系统自励交流励磁机的励磁电源从本机出口电压直接获得。为了维持端电压的 恒定用可控桂整流元件。因此,自动励磁调节器的调整电流输出至何处向发电 机转子送电:方案中,自励的交流励磁机经可控硅整流桥B向发电机转子送电,自动励 磁调节器控制此可控硅的导通角,调整其输出电流,以维持发电机端电压的恒 定。交流励磁

17、机本身则经过令一个反馈回路,由自身的恒压单元来保证其交流 励磁电压的恒定。由丁 这种方案完全不考虑励磁机的时间常数,因而,励磁电 压响应速度比较快,时间常数小,但是,对其容量要求较大。1.5无刷励磁系统在他励和S励交流励磁机系统中,发电机的励磁电流全部由可控硅(或二 极管)供给,而可控硅(或二极管)是静止的故称为静止励磁。在静止励磁系 统中要经过滑环才能向旋转的发电机转子提供励磁电流。滑环是一种转动接触 元件。随着发电机容量的快速增大,巨型机组的出现,转子电流大大增加 (3000 5000安培),转子滑环中通过如此大的电流,滑环的数量就要增加很 多。为了防止机组运行当中个别滑环过热,每个滑环必

18、须分担同样大小的电流。 为了提高励磁系统的可靠性取消滑环这一薄弱环节,使整个励磁系统都无转动 接触的元件,就产生了无刷励磁系统,如下图所示:无刷励磁系统方案之一副励磁机FL是一个永磁式中频发电机,其永磁部分画在旋转部分的虚线框 内。为实现无刷励磁,主励磁机与一般的同步发电机的工作原理基本相同,只 是电枢是旋转的。其发出的三相交流电经过二极管整流后,直接送到发电机的 转子回路作励磁电源,因为励磁机的电枢与发电机的转子同轴旋转,所以它们 之间不需要任何滑环与电刷等转动接触元件,这就实现了无刷励磁。主励磁机的励磁绕组几LQ是静止的,即主励磁机是一个磁极静止,电枢旋 转的同步发电机。静止的励磁机励磁绕

19、组便于自动励磁调节器实现对励磁机输 出电流的控制,以维持发电机端电压保持恒定。在方案一中,考虑到励磁机励磁绕组LLQ的时间常数,其响应速度较慢。 为了提高响应速度可以采用方案二,就是将可控硅整流桥装设旋转部分,代替 方案一旋转部件中的二极管整流桥。方案二中由中频副励磁机ZPF供电给交流 主励磁机几的直流励磁绕组几LQ。可控桂的触发脉冲由同轴旋转的触发脉冲 发生器PG供给。PG也是一个由多相绕组组成的电枢,它的磁场由d、q两个互 相垂直的绕组的磁场合成,因此当d、q磁场的大小作各种不同的变化时,PG 的合成磁场(相对几LQ磁场)就在作不同角度的转变,转变的范围为90。 这样就使得PG的触发脉冲与

20、主励磁机JL各相交流电压之间,产生不同的相角 变化,从而控制主励磁机送至发电机转子绕组的励磁电流的大小,以达到维持 发电机端电压恒定的目的。在方案二中,不必考虑主励磁机励磁绕组几LQ时间常数的影响,所以其响 应速度比方案一快,其自动励磁调节器的输出与其他励磁系统不同,显得较为 复杂一些,但并不难实现。总的来说,其优点是:革除了滑环和碳刷等转动接 触部分。其缺点是:在监视与维修上有其不方便之处。由于与转子回路直接连 接的元件都是旋转的,因而转子回路的电压电流都不能用普通的直流电压表、 直流电流表直接进行监视,转子绕组的绝缘情况也不便监视,二极管与可控硅 的运行状况,接线是否开脱,熔丝是否熔断等等

21、都不便监视。因而在运行维护 上不太方便。但随着科技的发展,监视问题正在得到逐步解决。1.6无励磁机发电机自并励系统。励磁机本身就是可靠性不高的元件,可以说它是励磁系统的薄弱环节之一, 因励磁机故障而迫使发电机退出运行的事故并非鲜见,故相应地出现了不用励 磁机的励磁方案。如下图所示:发电机的励磁电源直接由发电机端电压获得, 经过控制整流后,送至发电机转子回路,作为发电机的励磁电流,以维持发电 机端电压恒定的励磁方式,是无励磁机的发电机自励系统。最简单的发电机自 励系统是直接使用发电机的端电压作励磁电流的电源,由自动励磁调节器控制 励磁电流的大小,称为自并励可控桂励磁系统,简称自并励系统。自并励系

22、统 中,除去转子本体极其滑环这些属于发电机的部件外,没有因供应励磁电流而 采用的机械转动或机械接触类元件,所以又称为全静止式励磁系统。下图为无 励磁机发电机自并励系统框图,其中发电机转子励磁电流电源由接于发电机机 端的整流变压器ZB提供,经可控硅整流向发电机转子提供励磁电流,可控硅元 件SCR由自动励磁调节器控制。系统起励时需要令加一个起励电源。无励磁机发电机自并励系统框图无励磁机发电机自并励系统的优点是:不需要同轴励磁机,系统简单,运 行可靠性高;缩短了机组的长度,减少了基建投资及有利于主机的检修维护; 由可控硅元件直接控制转子电压,可以获得较快的励磁电压响应速度;由发电 机机端获取励磁能量

23、,与同轴励磁机励磁系统相比,发电机组甩负荷时,机组 的过电压也低一些。其缺点是:发电机出口近端短路而故障切除时间较长时, 缺乏足够的强行励磁能力,对电力系统稳定的影响不如其它励磁方式有利。由于以上特点,使得无励磁机发电机自并励系统在国内外电力系统大型发 电机组的励磁系统中受到相当重视。在发电机与系统间由升压变压器的单元接 线和抽水蓄能机组等励磁系统中得到实际应用。随着微机励磁调节器的应用,氧化锌非线性灭磁电阻的研制成功及大功率 晶闸管及晶体管的广泛应用,提高了发电机励磁系统的可靠性,较大地改善了 励磁系统静态和动态品质,大大提高了系统的技术性能指标。1 5s,在诸多励磁系统中,直接励磁机维护困

24、难,调节器响应时间长达 动态性能差,当空载起励时,电压超调量大,频率特性差;他励可控桂励磁系 统需装设交流励磁机,并要求厂房高度高,当其用于慢速水轮机时,交流励磁 机体质量大、尺寸大、维修工作量大。20世纪70 80年代,发电厂开始用自 复励及自并励的可控硅励磁系统,由于它们均属于快速励磁系统,动态性能优 良,尤其是带有微型计算机励磁调节器的自并激静止励磁系统在发电厂中得以 广泛的应用。自并激励磁系统接线简单、设备少、造价低、占地面积小、无转 动部件并维护简单,是快速响应系统。尤其是水电站往往远离负荷中心的地区, 为提高输电的稳定性,对励磁系统耍求能快速响应,而自并激励磁系统恰好能 满足这个要

25、求。第二章:下花园电厂发电机励磁系统概况分析第一节:静止励磁系统及工作原理我厂3台发电机的励磁系统是采用的静止整流器励磁方式原理图如下图所 示。在图示的交流励磁机系统中主励磁机L和副励磁机FL,是与发电机同步旋 转的交流机,而整流设备为静止元件。主励磁机L的频率为100HZ的交流发电 机,必须经过硅整流桥GZ整流,变为直流电源,供给发电机转子绕组的励磁。 副励磁机FL是一个频率500HZ的中频交流永磁发电机。本身不另设励磁回路。 简化了励磁系统。FL的输出功率,KZ通过整流,作为主励磁机L的励磁电源。 励磁调节装置ZTL的作用是根据发电机端电压的偏差信号,输出一个相应的触 发脉冲,对可控硅的导

26、通角进行控制,控制了主励磁机的输出功率,从而改变 了发电机的励磁电流。实现了励磁电流的自动调节。在静止整流器励磁系统中, 由于硅整流元件代替了直流励磁机的换向器,因此,改善了励磁机的运行条件, 使维护工作量减少。采用交流励磁机的励磁系统与直流励磁系统一样,具有独 立的励磁电源。不受外系统干扰,供电可靠的优点。同时解决了整流子运行维 护问题。且交流励磁机的容量不受限制,所以用于大型发电机的励磁系统。因 为采用交流励磁机系统,体积庞大、价格昂贵,各励磁机之间的功率传送仍通 过电刷,因此也属丁有刷励磁系统。他励交流励磁机系统原理接线图上图为他励式交流励磁机同步发电机的励磁系统简图:他励交流励磁机系

27、统的副励磁机一般为中频发电机,频率为400HZ或500HZ,主励磁机的频率为 100H Z,组成响应速度快的励磁系统。副励磁机是自励式的交流发电机,为保持 其端电压的恒定,由一个简单的自动调压器调整其励磁电流,其励磁绕组FLLQ 由本机组电压经可控硅整流后供电,由丁 可控硅的可靠起励电压较高,在启动 时需要外加一个直流起励电压,直至副励磁机的交流电压值足以使可控硅导通 时,才能正常工作。此时起励电源退出运行。这是交流自励式发电机与直流自 励式发电机的不同之处。其缺点是如果一个发电厂的所有发电机组都需要用起 励电源的交流励磁机系统,当发生全厂性停电事故十,在锅炉、汽机等都用备 用汽泵启动以后,发

28、电机终究会因为没有合适的起励电源而不能发电,这将延 误事故情况下的机组发电时间。所以起励电源一般不从机组母线上引出。为弥 补他励式交流励磁机系统的不足,现在大型机组一般采用永磁式的副励磁机, 如下图所示:上图中,用永磁式感应子中频发电机作副励磁机,省掉了自励恒压单元, 永磁机的出口交流电压可以认为是恒定不变的。在他励式交流励磁机同步发电 机的励磁系统中,自动励磁调节器输出的调整电流是控制主励磁机的励磁电流 的;在永磁式副励磁机系统中,自动励磁调节器输出的调整电流是控制发电机 转子的励磁电流的。在永磁式副励磁机系统中,要求主励磁机的运行容量较大, 在响应速度方面也较他励式交流励磁机同步发电机的励

29、磁系统快,这是容量换 来的速度。新厂3台发电机、老厂#5发电机的励磁电流全部由可控桂供给,可控硅是 静止的,称之为静止励磁方式。第二节:旋转无刷励磁系统由于励磁系统比较复杂,上述机组的励磁系统大家也比较熟悉,#7发电机 励磁调节器的功能,使用方法与其他机组励磁调节器的功能相同,不在详述。老厂新安装的#7发电机组为旋转无刷励磁方式的发电机。与我厂的其他发 电机励磁方式不同,而且存在很大的区别。下面是我粗浅的认识,与大家共同 学习。#7发电机在转子达到额定转速3000r/min时,合初励电源,初励电源经励 磁调节器的初励控制回路加在励磁机定子的励磁线圈上。励磁机与一般的发电 机原理相同,但它的电枢

30、是旋转的,即励磁机的转子(电枢)与发电机转子同步 旋转,其电枢绕组切割初励电源建立的初磁场产生三相电流,经过培断器通过 旋转二极管整流送至发电机转子为其提供励磁电流。瞬间在发电机端建立 15% 的发电机额定电压。初励电源回路不保持,建立初磁场后自动退出。励磁调节器采集发电机机端电压互感器1YH、2YH电压量,定子电流4LH、 励磁变低压侧转子电流CT电流量通过变换器进入微机励磁调节装置,经过逻辑 软件控制产生触发脉冲控制可控硅整流桥的励磁电流输出,并控制外附小型中 间继电器提供励磁系统各种正常、异常、故障信号。初励电源在发电机端建立15%的发电机额定电压后,经过发电机机端的励 磁变压器提供励磁

31、电源经过可控硅整流后送至励磁机定子的励磁线圈上建立磁 场,励磁机电枢绕组切割这个磁场产生三相电流,再经过熔断器通过旋转二极 管整流送至发电机转子为其提供励磁电流。励磁变高压侧通过刀闸从发电机机端获得电能,低压侧接至励磁调节器交 流输入电源控制刀闸的下端,交流输入 A、B套下端短接,一路上端进入#1可 控硅整流桥,通过微机励磁调节装置提供的触发脉冲控制可控硅整流桥的励磁 电流输出,经过第一路直流输出开关送至励磁机定子的励磁线圈上建立励磁磁 场。第二路同第一路相同。正常运行过程中,通过设置主/从方式,一桥运行, 另一桥跟踪备用。旋转无刷励磁方式因为励磁机的电枢与发电机的转子在同一根轴上旋转, 所以

32、它们之间不需要任何滑环和电刷等转动接触元件,这就实现了无刷励磁。 无刷励磁系统革除了滑环与炭刷等转动接触部分,是其优点。其缺点是由于与转子回路直接连接的元件都是旋转的,因而转子回路的电 压、电流都不能用普通的直流电压表、直流电流表进行监视,转子绕组的绝缘 情况也不便监视,旋转二极管的运行状况、接线是否开脱、熔丝是否熔断等等 也都不便于监视。因而在运行维护上是不方便的。第三节:SAVR2000励磁系统的检查及故障处理发电机并网后及正常运行情况下,应对发电机励磁系统进行必要的检查,主要 包括:1励磁系统各指示灯、光字、表计指示正常;各开关、刀闸、切换控制 开关位置正确;风机运行正常。2着重检查励磁

33、控制装置A、B套闪烁灯正常,闪烁灯闪烁情况于与对 应设备状态如下:每秒钟闪烁三次:不具备运行条件;b .每秒钟闪烁一次:空载状态;c.三秒钟闪烁一次:负载状态;d六秒钟闪烁一次:停止录波状态;e .不闪:故障状态。当出现第4、5种闪烁情况时,应立即通知检修人员进行处理。第四节:当励磁系统有以下异常时的处理:1.1励磁系统发出以下光字表示:a .FLG故障:整流柜停风、快速熔断器熔断。b .FLG故障:整流屏停风、快速熔断器熔断。c.过电压动作:发电机转子回路过电压保护动作。d .六秒钟闪烁一次:停止录波状态e .励磁限制:发电机励磁限制,包括:强励限制、过励限制、欠励限制、 V/F限制。f.

34、SVAR2000故障:A、B调节器故障(A套、B套或A、B同时故障),包 括:硬件故障、软件故障、电源掉电、PT断线。g. SVAR2000掉电:调节器交流或直流电源故障。以上光字发出后应进行相应处理、检查。2调节器直流工作电源消失后,在发电机控制盘上不能进行增磁、 减磁操作,但就地面板上仍能进行增磁”、减磁操作。3当快速熔断器熔断时,拉开对应的整流桥两侧的打闸或开关,然后通 知保护班进行更换。4当运行中自动电压调节器 A、B套同时故障时,手动柜投入,此时应 注意调整无功正常及检查自动桥开关掉闸。第五节:励磁整流柜风机故障时的处理1检查另一路风机是否自投。当风机不自投时,应降低励磁电流使整流

35、柜输出电流不超额定。断开整流柜两侧的交流开关和直流输出刀闸。检查风机 交流电源是否正常,风机热偶是否动作。电机有无卡涩,测量电机绝缘是否正 常。若一切正常可以试送风机。正常后可恢复正常运行。第三章:自并激励磁系统对电力系统稳定性的影响在电力系统中,大机组往往通过多回高压输电线给远方负荷中心供电,为 减少损耗常常采取无功就地平衡,由于高压线路充电功率大,一旦发生扰动, 很容易破坏无功平衡,引起电压不稳定问题。通过自并激励磁系统的实际应用和多年实验,自并激励磁系统对电网稳定 有极其重要的作用。第一节:提高静态稳定当快速励磁采用较高励磁系统增益并配置PSS (电力系统稳定器)后,在小干扰时,可以保持

36、发电机端电压恒定,艮P:交流励磁机励磁系统一般只能保护Eg或E恒定,即使是能保持 E恒定,其最大功率输出为:(2)设发电机不调励磁,在励磁电流恒定的情况K:Xd =0. 3, Xe=0. 6, Ut=1.0,E/ =1.2 贝UPml=l.25Pm2 (3)即自并激励磁系统可提高静稳定25%,当进行励磁调整时,自并激励磁系 统可大大提高静稳定。式中P有功功率;Ut电动势;Uc-出口电压;Xe -发电机阻抗;5一功角;Xdd轴暂态阻抗;Egr 与励磁电流成正比电势;Ed、q轴合成电势;PmK Pm2最大功率。第一节提高动态稳定动态稳定是指在小干扰情况下,由于阻尼不足产生振荡失步,或大干扰后 对后续振荡阻尼不足产生振荡失步。快速励磁配置PSS后,由于励磁系统延时 小,有利于PSS发挥作用,并可增加更多的正阻尼,提高动态稳定。第三节:对暂态稳定的影响采用自并激励磁系统后,如发生高压出口三相短路,强励倍数按2倍计算, 其暂态稳定水平与实际时间常数Te=0. 35s的常规励磁系统基本相同。这是因为自并激励磁系统虽然在强励时受机端电压影响,强励倍数较低, 但调节速度快,恢复电压迅速,而常规励磁系统虽然强励能力受机端电压影响 小,但交流励磁机

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论