2022-2023学年河南省郑州桐柏一中学九年级数学第一学期期末检测模拟试题含解析_第1页
2022-2023学年河南省郑州桐柏一中学九年级数学第一学期期末检测模拟试题含解析_第2页
2022-2023学年河南省郑州桐柏一中学九年级数学第一学期期末检测模拟试题含解析_第3页
2022-2023学年河南省郑州桐柏一中学九年级数学第一学期期末检测模拟试题含解析_第4页
2022-2023学年河南省郑州桐柏一中学九年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1若,则下列比例式中正确的是( )ABCD2下列方程中,是关于x的一元二次方程的是()A5x+52x1By27y0Cax2+bc+c0D2x2+2xx2-13如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()ABCD4已知反比例函数图像上三个点的坐标分别是,能正确反映的大小关系的是( )

2、ABCD5下列事件中,属于必然事件的是( )A小明买彩票中奖B投掷一枚质地均匀的骰子,掷得的点数是奇数C等腰三角形的两个底角相等D是实数,6直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()ABCD7已知关于x的一元二次方程x24x+c0的一个根为1,则另一个根是()A5B4C3D28如图,在矩形ABCD中,点E是边BC的中点,AEBD,垂足为F,则sinBDE的值是 ( )ABCD9如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作A,则下列各点中在A外的是( )A点AB点BC点CD点D10函数y=ax2+1与(a0)在同一平面直角坐

3、标系中的图象可能是( )ABCD11某楼盘的商品房原价12000元/,国庆期间进行促销活动,经过连续两次降价后,现价9720元/,求平均每次降价的百分率。设平均每次降价的百分率为,可列方程为( )ABCD12如图,是由绕点顺时针旋转后得到的图形,若点恰好落在上,且的度数为( )ABCD二、填空题(每题4分,共24分)13定义为函数的“特征数”如:函数的“特征数”是,函数的“特征数”是,在平面直角坐标系中,将“特征数”是的函数的图象向下平移3个单位,再向右平移1个单位,得到一个新函数,这个新函数的“特征数”是_.14若关于的一元二次方程x2+2x-k=0没有实数根,则k的取值范围是_15如图是一

4、条水铺设的直径为2米的通水管道横截面,其水面宽1.6米,则这条管道中此时水深为_米16如图,已知四边形ABCD是菱形,BCx轴,点B的坐标是(1,),坐标原点O是AB的中点.动圆P的半径是,圆心在x轴上移动,若P在运动过程中只与菱形ABCD的一边相切,则点P的横坐标m 的取值范围是_17已知抛物线与 轴交于两点,若点 的坐标为,抛物线的对称轴为直线 ,则点的坐标为_18如图,在RtABC中,ACB90,BAC60把ABC绕点A按顺时针方向旋转60后得到ABC,若AB4,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_(结果保留)三、解答题(共78分)19(8分)某校七年级一班和二班各

5、派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a ,b ,c (2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩20(8分)有甲乙两个不透明的布袋,甲布袋装有个形状和重量完全相同的小球,分别标有数字和;乙布袋装有个形状和重量完全相同的小球,分别标有数字,和先从甲布袋中随机取出一个小球,将小球上标有的数字记作;再从乙布袋中随机取出一个小球,再将小球标有的数字记作(1)用画树状图或列表法写出两次摸球的数字可能出现的所有结果;(2)若从甲、乙两布袋中取出的小球上面的数记作点的坐标,求点在一次函数图象上的概率是多少?21(

6、8分)如图,O是ABC的外接圆,AB是O的直径,D为O上一点,ODAC,垂足为E,连接BD(1)求证:BD平分ABC;(2) 当ODB=30时,求证:BC=OD22(10分)如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象交于点,两点.(1)求一次函数的表达式及点的坐标;(2)点是第四象限内反比例函数图象上一点,过点作轴的平行线,交直线于点,连接,若,求点的坐标23(10分)如图,抛物线yx2bxc过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PDy轴交直线AC于点D(1)求抛物线的解析式;(2)求点

7、P在运动的过程中线段PD长度的最大值;(3)APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由24(10分)如图,是的直径,点在上,垂直于过点的切线,垂足为(1)若,求的度数;(2)如果,则 25(12分)如图,点的坐标为,点的坐标为.点的坐标为.(1)请在直角坐标系中画出绕着点逆时针旋转后的图形.(2)直接写出:点的坐标(_,_),(3)点的坐标(_,_).26如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且BEF90,延长EF交BC的延长线于点G;(1)求证:ABEEGB;(2)若AB4,求CG的长.参考答案一、选择题(每题4分,共48分)1

8、、C【分析】根据比例的基本性质直接判断即可.【详解】由,根据比例性质,两边同时除以6,可得到,故选C.【点睛】本题考查比例的基本性质,掌握性质是解题关键.2、D【分析】根据一元二次方程的定义逐个判断即可【详解】解:A、是关于x的一元一次方程,不是一元二次方程,故本选项不符合题意;B、是关于y的一元二次方程,不是关于x的一元二次方程,故本选项不符合题意;C、只有当a0时,是关于x的一元二次方程,故本选项不符合题意;D、是关于x的一元二次方程,故本选项符合题意;故选:D【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键3、C【分析】找到从正面看所得到的图形即可【详解

9、】解:它的主视图是:故选:C【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.4、B【分析】根据反比例函数关系式,把2、1、2代入分别求出,然后比较大小即可.【详解】将A、B、C三点横坐标带入函数解析式可得,.故选:B.【点睛】本题考查反比例函数图象上点的坐标,正确利用函数表达式求点的坐标是解题关键.5、C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项【详解】解:A. 小明买彩票中奖,是随机事件; B. 投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C. 等腰三角形的两个底角相等,是必然事件; D. 是实数,是不可能事件;故选C.【点睛】本题考查的是必然事件

10、、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件6、A【解析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y = 12ax-12ax2,以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【点睛】考查了现实中的二次函数问题,考查了学生的分析、 解决实际问题的能力.7、C

11、【解析】根据根与系数的关系可得出两根之和为4,从而得出另一个根【详解】设方程的另一个根为m,则1+m=4,m=3,故选C【点睛】本题考查了一元二次方程根与系数的关系解答关于x的一元二次方程x2-4x+c=0的另一个根时,也可以直接利用根与系数的关系x1+x2=-解答.8、C【分析】由矩形的性质可得ABCD,ADBC,ADBC,可得BECEBCAD,由全等三角形的性质可得AEDE,由相似三角形的性质可得AF2EF,由勾股定理可求DF的长,即可求sinBDE的值【详解】四边形ABCD是矩形ABCD,ADBC,ADBC点E是边BC的中点,BECEBCAD,ABCD,BECE,ABCDCB90ABED

12、CE(SAS)AEDEADBCADFEBF2AF2EF,AE3EFDE, sinBDE,故选C【点睛】本题考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解直角三角形的运用,熟练运用相似三角形的判定和性质是本题的关键9、C【解析】试题分析:根据勾股定理求出AC的长,进而得出点B,C,D与A的位置关系解:连接AC,AB=3cm,AD=4cm,AC=5cm,AB=34,AD=4=4,AC=54,点B在A内,点D在A上,点C在A外故选C考点:点与圆的位置关系10、B【解析】试题分析:分a0和a0两种情况讨论:当a0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一

13、、三象限,没有选项图象符合;当a0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合故选B考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用11、D【分析】根据题意利用基本数量关系即商品原价(1-平均每次降价的百分率)=现在的价格,列方程即可【详解】解:由题意可列方程是:故选:D.【点睛】本题考查一元二次方程的应用最基本数量关系:商品原价(1-平均每次降价的百分率)=现在的价格12、C【分析】由旋转的性质知AOD=30、OA=OD,根据等腰三角形的性质及内角和定理可得答案【详解】解:由题意得,故选:C【点睛】本题主要考查旋转的性质,熟练掌握旋转的性质

14、:对应点到旋转中心的距离相等对应点与旋转中心所连线段的夹角等于旋转角旋转前、后的图形全等是解题的关键二、填空题(每题4分,共24分)13、【分析】首先根据“特征数”得出函数解析式,然后利用平移规律得出新函数解析式,化为一般式即可判定其“特征数”.【详解】由题意,得“特征数”是的函数的解析式为,平移后的新函数解析式为这个新函数的“特征数”是故答案为:【点睛】此题主要考查新定义下的二次函数的平移,解题关键是理解题意.14、k-1.【分析】若关于x的一元二次方程x2+2x-k=0没有实数根,则=b2-4ac0,列出关于k的不等式,求得k的取值范围即可【详解】关于x的一元二次方程x2+2x-k=0没有

15、实数根,=b2-4ac0,即22-41(-k)0,解这个不等式得:k-1故答案为:k-115、【详解】解:作出弧AB的中点D,连接OD,交AB于点C则ODABAC=AB=0.8m在直角OAC中,OC=0.6m则水深CD=OD-OC=1-0.6=0.4m【点睛】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解,常见辅助线是过圆心作弦的垂线16、或或或【分析】若P在运动过程中只与菱形ABCD的一边相切,则需要对此过程分四种情况讨论,根据已知条件计算出m的取值范围即可【详解】解:由B点坐标(1,

16、),及原点O是AB的中点可知AB=2,直线AB与x轴的夹角为60,又四边形ABCD是菱形,AD=AB=BC=CD=2,设DC与x轴相交于点H,则OH=4,(1)当P与DC边相切于点E时,连接PE,如图所示,由题意可知PE=,PEDC,PHE=60,PH=2,此时点P坐标为(-6,0),所以此时(2)当P只与AD边相切时,如下图,PD=,PH=1,此时,当P继续向右运动,同时与AD,BC相切时,PH=1,所以此时,当时,P只与AD相切;,(3)当P只与BC边相切时,如下图,P与AD相切于点A时,OP=1,此时m=-1,P与AD相切于点B时,OP=1,此时m=1,当,P只与BC边相切时;,(4)当

17、P只与BC边相切时,如下图,由题意可得OP=2,此时综上所述,点P的横坐标m 的取值范围或或或【点睛】本题考查圆与直线的位置关系,加上动点问题,此题难度较大,解决此题的关键是能够正确分类讨论,并根据已知条件进行计算求解17、【解析】根据抛物线对称轴是直线及两点关于对称轴直线对称求出点B的坐标即可.【详解】解:抛物线与 轴交于两点,且点 的坐标为,抛物线的对称轴为直线 点B的横坐标为 即点B的坐标为【点睛】本题考查抛物线的对称性,利用数形结合思想确定关于直线对称的点的坐标是本题的解题关键.18、2【分析】由题意根据阴影部分的面积是:扇形BAB的面积+SABC-SABC-扇形CAC的面积,分别求得

18、:扇形BAB的面积和SABC,SABC以及扇形CAC的面积,进而分析即可求解【详解】解:扇形BAB的面积是:,在直角ABC中,扇形CAC的面积是:,则阴影部分的面积是:扇形BAB的面积+-扇形CAC的面积=故答案为:2【点睛】本题考查扇形的面积的计算,正确理解阴影部分的面积是:扇形BAB的面积+-扇形CAC的面积是解题的关键三、解答题(共78分)19、解:(1)a135,b134.5,c1.6;(2)从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;一班和二班的平均成绩相同,说明他们的水平相当;一班成绩的方差小于二班,说明一班成绩比二班稳定【分析】(1)根据表中数据和中位数的

19、定义、平均数和方差公式进行计算可求出表中数据;(2)从不同角度评价,标准不同,会得到不同的结果【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为=134.5;根据方差公式:s2=1.6,a135,b134.5,c1.6;(2)从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;从中位数看,一班一分钟跳绳135以上的人数比二班多;从方差看,S2一S2二;一班成绩波动小,比较稳定;从最好成绩看,二班速度最快的选手比一班多一人;一班和二班的平均成绩相同

20、,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力20、(1)(1,1),(1,0),(1,3),(2,1),(2,0),(2,3);(2)【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果; (2)由(1)可求得点(x,y)在一次函数y=-2x+1图象上的情况,然后直接利用概率公式求解即可求得答案【详解】解:(1)画树状图得:则点可能出现的所有坐标:(1,1),(1,0),(1,3),(2,1),(2,0),(2,3);(2)在所有的6种等可能结果中,落在y=2x+1图象上的有(1

21、,1)、(2,3)两种结果,点(x,y)在一次函数y=2x+1图象上的概率是【点睛】本题考查了列表法和树状图法求概率,一次函数图象上点的坐标特征,正确的画出树状图是解题的关键21、 (1)证明见解析;(2)证明见解析.【分析】(1)由ODAC OD为半径,根据垂径定理,即可得,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可证得BD平分ABC;(2)首先由OB=OD,易求得AOD的度数,又由ODAC于E,可求得A的度数,然后由AB是O的直径,根据圆周角定理,可得ACB=90,继而可证得BC=OD【详解】(1)ODAC OD为半径,CBD=ABD,BD平分ABC;(2)OB=OD,OBD=0

22、DB=30,AOD=OBD+ODB=30+30=60,又ODAC于E,OEA=90,A=180OEAAOD=1809060=30,又AB为O的直径,ACB=90,在RtACB中,BC=AB,OD=AB,BC=OD22、(1)y=-2x,B(2,-4);(2)或【分析】(1)先求出点A的坐标,再代入一次函数即可求出一次函数表达式,由一次函数和反比例函数解析式即可求出点B的坐标;(2)设点,m0,表达出PC的长度,进而表达出POC的面积,列出方程即可求出m的值【详解】解:(1)点在反比例函数图象上,解得:a=-2,代入得:,解得:k=-2,y=-2x,由,解得:x=2或x=-2,点B(2,-4);

23、(2)如图,设点,m0PCx轴,点C的纵坐标为,则=-2x,解得:x=,PC=,解得:,(舍去),(舍去),或【点睛】本题考查了反比例函数与一次函数综合问题,以及反比例函数与几何问题,解题的关键是熟悉反比例函数图象上点的坐标的特点23、(1)yx2-4x1;(2)点P在运动的过程中,线段PD长度的最大值为;(1)能,点P的坐标为:(1,0)或(2,-1)【分析】(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解;(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答;(1)分情况讨论

24、APD是直角时,点P与点B重合,求出抛物线顶点坐标,然后判断出点P为在抛物线顶点时,PAD是直角,分别写出点P的坐标即可;【详解】(1)把点A(1,0)和点B(1,0)代入抛物线yx2bxc,得:解得yx2-4x1 (2)把x0代入yx2-4x1,得y1C(0,1)又A(1,0),设直线AC的解析式为:ykxm,把点A,C的坐标代入得:直线AC的解析式为:yx1PD-x1- (x2-4x1)-x21x 0 x1,x时,PD最大为即点P在运动的过程中,线段PD长度的最大值为(1)APD是直角时,点P与点B重合,此时,点P(1,0),yx24x+1(x2)21,抛物线的顶点坐标为(2,1),A(1,0),点P为在抛物线顶点时,PAD45+4590,此时,点P(2,1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论