2022-2023学年安徽许镇数学九上期末质量跟踪监视模拟试题含解析_第1页
2022-2023学年安徽许镇数学九上期末质量跟踪监视模拟试题含解析_第2页
2022-2023学年安徽许镇数学九上期末质量跟踪监视模拟试题含解析_第3页
2022-2023学年安徽许镇数学九上期末质量跟踪监视模拟试题含解析_第4页
2022-2023学年安徽许镇数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1下列说法中,不正确的个数是( )直径是弦;经过圆内一定点可以作无数条直径;平分弦的直径垂直于弦;过三点可以作一个圆;过圆心且垂直于切线的直线必过切点.( )A1个B2个C3个D4个2如图,一块直角三角板的30角的顶点P落在O上,两边分别交O于A、B两点,若O的直径为8,则弦AB长为()ABC4D6

2、3袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )ABCD4如图,反比例函数y与y的图象上分别有一点A,B,且ABx轴,ADx轴于D,BCx轴于C,若矩形ABCD的面积为8,则ba()A8B8C4D45设是方程的两个实数根,则的值为( )A2017B2018C2019D20206若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A5B10C20D407如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度( )A变大B变小C不变D不能确定8商场举行摸奖促销活

3、动,对于“抽到一等奖的概率为0.01”下列说法正确的是( )A抽101次也可能没有抽到一等奖B抽100次奖必有一次抽到一等奖C抽一次不可能抽到一等奖D抽了99次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖9如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A左、右两个几何体的主视图相同B左、右两个几何体的左视图相同C左、右两个几何体的俯视图不相同D左、右两个几何体的三视图不相同10如图一块直角三角形ABC,B90,AB3,BC4,截得两个正方形DEFG,BHJN,设S1DEFG的面积,S2BHJN的面积,则S1、S2的大小关系是

4、()AS1S2BS1S2CS1S2D不能确定11如图,在ABC中,A=90若AB=12,AC=5,则cosC的值为( )ABCD12函数y=-x2-3的图象顶点是( )ABCD二、填空题(每题4分,共24分)13关于的方程一个根是1,则它的另一个根为_14如图,人字梯,的长都为2米.当时,人字梯顶端高地面的高度是_米(结果精确到.参考依据:,)15如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100,扇形的圆心角为120,这个扇形的面积为 16如图,反比例函数的图像过点,过点作轴于点,直线垂直线段于点,点关于直线的对称点恰好在反比例函数的图象上,则的值是_17如图,在ABC中,D、

5、E分别是AB、AC上的点,且DEBC,若AD:AB=4:9,则SADE:SABC= 18将边长为的正方形绕点按顺时针方向旋转到的位置(如图),使得点落在对角线上,与相交于点,则_.(结果保留根号)三、解答题(共78分)19(8分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4

6、800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.20(8分)计算:(1);(2)先化简,再求值,其中a=2020;21(8分)如图,抛物线经过点A(1,0),B(5,0),C(0,)三点,顶点为D,设点E(x,y)是抛物线上一动点,且在x轴下方(1)求抛物线的解析式;(2)当点E(x,y)运动时,试求三角形OEB的面积S与x之间的函数关系式,并求出面积S的最大值?(3)在y轴上确定一点M,使点M到D、B两点距离之和dMD+MB最小,求点M的坐标22(10分)如图,直线yx+2与反比例函数y的图象在第二象限内交于点A,过点A作ABx

7、轴于点B,OB1(1)求该反比例函数的表达式;(2)若点P是该反比例函数图象上一点,且PAB的面积为3,求点P的坐标23(10分)重庆八中建校80周年,在体育、艺术、科技等方面各具特色,其中排球选修课是体育特色项目之一体育组老师为了了解初一年级学生的训练情况,随机抽取了初一年级部分学生进行1分钟垫球测试,并将这些学生的测试成绩(即1分钟的垫球个数,且这些测试成绩都在60180范围内)分段后给出相应等级,具体为:测试成绩在6090范围内的记为D级(不包括90),90120范围内的记为C级(不包括120),120150范围内的记为B级(不包括150),150180范围内的记为A级现将数据整理绘制成

8、如下两幅不完整的统计图,其中在扇形统计图中A级对应的圆心角为90,请根据图中的信息解答下列问题:(1)在这次测试中,一共抽取了 名学生,并补全频数分布直方图:在扇形统计图中,D级对应的圆心角的度数为 度(2)王攀同学在这次测试中1分钟垫球140个他为了了解自己垫球个数在年级排名的大致情况,他把成绩为B等的全部同学1分钟垫球人数做了统计,其统计结果如表:成绩(个)120125130135140145人数(频数)2831098(垫球个数计数原则:120垫球个数125记为125,125垫球个数130记为130,依此类推)请你估计王攀同学的1分钟垫球个数在年级排名的大致情况24(10分)不透明的口袋里

9、装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个若从中随机摸出一个球,摸到蓝球的概率是(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率25(12分)将一块面积为的矩形菜地的长减少,它就变成了正方形,求原菜地的长26从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在ABC中,A=40,B=60,当BCD

10、=40时,证明:CD为ABC的完美分割线.(2)在ABC中,A=48,CD是ABC的完美分割线,且ACD是以AC为底边的等腰三角形,求ACB的度数.(3)如图2,在ABC中,AC=2,BC=2,CD是ABC的完美分割线,ACD是以CD为底边的等腰三角形,求CD的长.参考答案一、选择题(每题4分,共48分)1、C【分析】根据弦的定义即可判断;根据圆的定义即可判断;根据垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧即可判断;确定圆的条件:不在同一直线上的三点确定一个圆即可判断;根据切线的性质:经过圆心且垂直于切线的直线必经过切点即可判断【详解】解:直径是特殊的弦所以正确,

11、不符合题意;经过圆心可以作无数条直径所以不正确,符合题意;平分弦(不是直径)的直径垂直于弦所以不正确,符合题意;过不在同一条直线上的三点可以作一个圆所以不正确,符合题意;过圆心且垂直于切线的直线必过切点所以正确,不符合题意故选:C【点睛】本题考查了切线的性质、垂径定理、确定圆的条件,解决本题的关键是掌握圆的相关定义和性质2、C【分析】连接AO并延长交O于点D,连接BD,根据圆周角定理得出DP30,ABD90,再由直角三角形的性质即可得出结论【详解】连接AO并延长交O于点D,连接BD,P30,DP30AD是O的直径,AD8,ABD90,ABAD1 故选:C【点睛】此题考查圆周角定理,同弧所对的圆

12、周角相等,直径所对的圆周角是直角,由于三角板的直角边不经过圆心,所以连接出直径的辅助线是解题的关键.3、A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为故答案为A【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键4、A【分析】根据反比例函数系数k的几何意义得到|a|S矩形ADOE,|b|S矩形BCOE,进而得到|b|+|a|8,然后根据a0,b0可得答案【详解】解:如图,ABx轴,ADx轴于D,BCx轴于C,|a|S矩形ADOE,|b|S矩形BCOE,矩形ABCD

13、的面积为8,S矩形ABCDS矩形ADOE+S矩形BCOE8,|b|+|a|8,反比例函数y在第二象限,反比例函数y在第一象限,a0,b0,|b|+|a|ba8,故选:A【点睛】本题考查了反比例函数y(k0)的系数k的几何意义:从反比例函数y(k0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|5、D【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a是方程的实数根,可得,据此求出,利用根与系数关系得:=-3, 变形为()-(),代入即可得到答案【详解】解:a、b是方程的两个实数根,=-3;又, =()-()=2017-(-3)=1即的值为1故选:D【点睛】本题考

14、查了根与系数的关系与一元二次方程的解,把化成()-()是解题的关键6、B【分析】利用圆锥面积=计算.【详解】=,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.7、C【分析】四边形PAOB是扇形OMN的内接矩形,根据矩形的性质AB=OP=半径,所以AB长度不变【详解】解:四边形PAOB是扇形OMN的内接矩形,AB=OP=半径,当P点在弧MN上移动时,半径一定,所以AB长度不变,故选:C【点睛】本题考查了圆的认识,矩形的性质,用到的知识点为:矩形的对角线相等;圆的半径相等8、A【分析】根据概率是频率(多个)的波动稳定值,是对事件发生可

15、能性大小的量的表现进行解答即可【详解】解:根据概率的意义可得“抽到一等奖的概率为为0.01”就是说抽100次可能抽到一等奖,也可能没有抽到一等奖,抽一次也可能抽到一等奖,抽101次也可能没有抽到一等奖故选:A【点睛】本题考查概率的意义,概率是对事件发生可能性大小的量的表现9、B【分析】直接利用已知几何体分别得出三视图进而分析得出答案【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键10、B【

16、分析】根据勾股定理求出AC,求出AC边上的高BM,根据相似三角形的性质得出方程,求出方程的解,即可求得S1,如图2,根据相似三角形的性质列方程求得HJ,于是得到S2()2()2,即可得到结论【详解】解:如图1,设正方形DEFG的边长是x,ABC是直角三角形,B90,AB3,BC4,由勾股定理得:AC5,过B作BMAC于M,交DE于N,由三角形面积公式得:BCABACBM,AB3,AC5,BC4,BM2.4,四边形DEFG是正方形,DGGFEFDEMNx,DEAC,BDEABC,x,即正方形DEFG的边长是;S1()2,如图2,HJBC,AHJABC,即,HJ,S2()2()2,S1S2,故选:

17、B【点睛】本题考查了相似三角形的性质和判定,三角形面积公式,正方形的性质的应用,熟练掌握相似三角形的判定和性质是解题的关键11、A【解析】A=90,AC=5,AB=12,BC=13,cosC=,故选A.12、C【解析】函数y=-x2-3的图象顶点坐标是(0,-3).故选C.二、填空题(每题4分,共24分)13、1【分析】利用一元二次方程根与系数的关系 ,即可得出答案【详解】由一元二次方程根与系数的关系可知,关于的方程一个根是1,它的另一个根为1,故答案为:1【点睛】本题主要考查一元二次方程根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键14、1.5.【分析】在中,根据锐角三角函数正弦

18、定义即可求得答案.【详解】在中,.故答案为1.5.【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型15、300【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可底面圆的面积为100, 底面圆的半径为10,扇形的弧长等于圆的周长为20,设扇形的母线长为r, 则=20, 解得:母线长为30,扇形的面积为rl=1030=300考点:(1)、圆锥的计算;(2)、扇形面积的计算16、【分析】设直线l与y轴交于点M,点关于直线的对称点,连接MB,根据一次函数解析式确定PMO=45及M点坐标,然后根

19、据A点坐标分析B点坐标,MB的长度,利用对称性分析B的坐标,利用待定系数法求反比例函数解析式,然后将B坐标代入解析式,从而求解.【详解】解:直线l与y轴交于点M,点关于直线的对称点,连接MB由直线中k=1可知直线l与x轴的夹角为45,PMO=45,M(0,b)由,过点作轴于点B(0,2),MB=b-2B(2-b,b)把点代入中解得:k=-4恰好在反比例函数的图象上把B(2-b,b)代入中解得:(负值舍去) 故答案为:【点睛】本题考查了待定系数法求反比例函数、正比例函数的解析式,轴对称的性质,函数图象上点的坐标特征,用含b的代数式表示B点坐标是解题的关键17、16:1【分析】由DEBC,证出AD

20、EABC,根据相似三角形的性质即可得到结论【详解】DEBC,ADEABC,SADE:SABC=()2=,故答案为16:118、【分析】先根据正方形的性质得到CD=1,CDA=90,再利用旋转的性质得CF=,根据正方形的性质得CFE=45,则可判断DFH为等腰直角三角形,从而计算CF-CD即可【详解】四边形ABCD为正方形,CD=1,CDA=90,边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的位置,使得点D落在对角线CF上,CF=,CFDE=45,DFH为等腰直角三角形,DH=DF=CF-CD=-1故答案为-1【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心

21、所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了正方形的性质三、解答题(共78分)19、(1)();(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚. 【解析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x的取值范围;(2)根据利润=每千克的利润销售量,可得关于x的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 ,将点(10,200)、(15,150)分别代入,则,解得 ,蜜柚销售不会亏本,又, , ;(2) 设利润为元,则 =, 当

22、 时, 最大为1210, 定价为19元时,利润最大,最大利润是1210元;(3) 当 时,11040=44004800,不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.20、(1);(2),1【分析】(1)把分式方程化为整式方程,即可求解;(2)根据分式的运算法则进行化简,再代入a即可求解【详解】解:(1)去分母得:解得:检验:当时,是原分式方程的解;(2)=当时,原式=1【点睛】此题主要考查分式方程与分式化简求值,解题的关键是熟知其运算法则21、(1)yx24x+;(2)S(x3)2+(1x1),当x3时,S有最大

23、值;(3)(0,)【分析】(1)设出解析式,由待定系数法可得出结论;(2)点E在抛物线上,用x去表示y,结合三角形面积公式即可得出三角形OEB的面积S与x之间的函数关系式,再由E点在x轴下方,得出1x1,将三角形OEB的面积S与x之间的函数关系式配方,即可得出最值;(3)找出D点关于y轴对称的对称点D,结合三角形内两边之和大于第三边,即可确定当MD+MB最小时M点的坐标【详解】解:(1)设抛物线解析式为yax2+bx+c,则,解得:故抛物线解析式为yx24x+(2)过点E作EFx轴,垂足为点F,如图1所示E点坐标为(x,x24x+),F点的坐标为(x,0),EF0(x24x+)x2+4x点E(

24、x,y)是抛物线上一动点,且在x轴下方,1x1三角形OEB的面积SOBEF1(x2+4x)(x3)2+(1x1当x3时,S有最大值(3)作点D关于y轴的对称点D,连接BD,如图2所示抛物线解析式为yx24x+(x3)2,D点的坐标为(3,),D点的坐标为(3,)由对称的特性可知,MDMD,MB+MDMB+MD,当B、M、D三点共线时,MB+MD最小设直线BD的解析式为ykx+b,则,解得:,直线BD的解析式为yx当x0时,y,点M的坐标为(0,)【点睛】本题考查了待定系数法求二次函数和一次函数解析式、轴对称的性质、利用二次函数求最值等知识解题的关键是:(1)能够熟练运用待定系数法求解析式;(2

25、)利用三角形面积公式找出三角形面积的解析式,再去配方求最值;(3)利用轴对称的性质确定M点的位置22、(1);(2)(3,1)或(1,3)【分析】(1)先利用一次解析式确定A点坐标为(1,3),然后把A点坐标代入y中求出k得到反比例函数解析式;(2)设P(t,),利用三角形面积公式得到3|+1|3,然后解方程求出t,从而得到P点坐标【详解】(1)ABx轴于点B,OB1A点的横坐标为1,当x1时,yx+23,则A(1,3),把A(1,3)代入y得k133,反比例函数解析式为;(2)设P(t,),PAB的面积为3,3|+1|3,解得t3或t1,P点坐标为(3,1)或(1,3)【点睛】此题考查待定系

26、数法求函数解析式,一次函数与反比例函数的图象结合求几何图形的面积.23、(1)100,54;(2)王攀同学的1分钟垫球个数在年级排名是34名到42名之间【分析】(1)根据A级的人数和在扇形统计图中的度数可以求得本次抽查的学生人数,从而可以计算出D级的人数,进而可以将频数分布直方图补充完整,再根据统计图中的数据可以求得D级对应的圆心角的度数;(2)根据统计图中的数据和表格中的数据可以估计王攀同学的1分钟垫球个数在年级排名的大致情况【详解】(1)在这次测试中,一共抽取了25100名学生,D级的人数为:10020402515,补全的频数分布直方图如图所示:D级对应的圆心角的度数为:36054,故答案为:100,54;(2)由统计图可知,A级有25人,由表格可知,垫球145个的8人,垫球140个9人,25+833,33+942,王攀同学的1分钟垫球个数在年级排名是34名到42名之间【点睛】本题主要考查扇形统计图和频数直方图的综合应用,理解扇形统计图和频数直方图中数据的意义,是解题的关键.24、(1)1;(2)见解析,【分析】(1)设红球有x个,根据题意得:;(2)列表,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种.【详解】解:(1)设红球有x个,根据题意得:,解得:x=1,经检验x=1是原方程的根则口袋中红球有1个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论