




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、5 库存系统根本模型5.1 库存控制系统及其根本概念5.2 确定性存贮模型5.3 随机性存贮模型. 现代企业的消费过程中,为坚持延续消费,需求一定量的原资料、备品备件等的贮藏,构成物子的储存,以调理物资的供需矛盾。 物资的耗用是经常性的、小批量的、或是零星分散的,有些还带有季节性、周期性,或表现为顶峰需求;而供应的物资普通是分期、大批进货。因此,必需建立“存贮这一环节和手段来处理物资供需的延续平衡。 物资贮藏量过小,不能及时供应,消费停顿,设备闲置,经济损失大大超越物资存贮所需的费用;物资贮藏量过大,呵斥物资积压,过多地占用流动资金。.库存控制系统输入供应存贮输出需求信息反响库存控制:要求管理
2、者在满足需求的条件下,制定出合理的存 贮战略,其内容有:分析和建立合理的库存程度;在需求补充存贮时,每次定购的批量多大才适宜?存贮周期多长?费用为多少?能否允许缺货?订购物资需提早多少时间提出和办理订购手续?. 1915年,哈里森提出最正确订购批量公式,而后威尔逊推行运用。20世纪40年代后,人们日益注重库存问题,由于库存构成了企事业单位收支平衡中显著的部分,一些公司由于缺乏对库存量的控制而失败,从而促使存贮实际的开展,提出各种存贮模型及其定量分析,运筹学增添了一个分支存贮论。 存贮论是用库存总费用最小的原那么来研讨存贮模型,即着眼于经济效益,因此其实际和思想对我国当前的现实具有积极的意义。
3、普通来说,货物保管一年所需的全部费用大约是或物价钱的20%左右包括资金利息,超量的库存占用大量的流动资金,使流动资金冻结于停滞的存贮环节,时现代管理一按立和企业家所忌讳的,现代企业管理追求“极限库存,.第 一 节 库存控制系统及其根本概念1.1 存贮系统 库存控制系统简称存贮系统,包括存贮、输入、输出三个根本环节。1.1.1 存贮环节 把本单位消费运营需求而暂时未用的原料、工具、设备等物资存放到原料、备品等仓库中,或把本单位消费的称废品或半废品暂时存放到废品或半废品仓库中以待出卖,这种过程称为“存贮。 存贮:有形的仓库及其附属设备等的物流过程,还包括无形的信息积累等耗费时间、费用的过程。 存贮
4、环节的内容多种多样,都需求“保管费用。.1.1.2 输入环节根据物资的来源,存贮物资的输入有以下两类不同的方式:订购物资批量输入:物资的输入速率A可视为无穷大,如以下图。ttoQRRAA输入速率 A=输出速率 R=dQ/dt时间库存量.经过消费平衡地存贮入库:消费物资(包括产品、半废品等需求一定的时间tp,所以输入物资量Q速率A=dQ/dtp可视为以正值,tPtRoQRA输入速率 A=dQ/dtp输出速率 R=dQ/dtR时间库存量.物资入库之前,订购入库-提早订货时间; 消费入库-消费预备时间。这段时间称为订购提早时间或消费前预备时间tL。 tL的大小:由货源及运输条件决议。能够是近似确定性
5、的,也能够是随机性的。 物资的输入由仓库的管理者控制,需求做出决策的要素有:库存物资耗费到什么程度必需提出补充要求(这个最低的库存量称为存贮程度L?什么时候需求提出订货或预备消费?每次订购或消费的物资批量要多大?订购时能否接受供方提供的大批量购买优惠条件? 上述库存控制要素要做到决策合理,必需结合输出需求及存贮的经济分析综合思索。.1.1.3 输出环节 存贮物资的输出是为了满足需求,需求或输出的规律大致有以下几种: 延续均匀:ttoQRRAA输入速率 A=输出速率 R=dQ/dt时间库存量.断续的:时间库存量QO需求来自存贮系统的变化,仓库管理者无法控制。需求量能够是随机性的:可以经过长期的统
6、计,找到统计规律性,做出概率分布,建立存贮模型。280 10 20 30 40 50 60 70 8048202218需求量概率%.1.2 存贮模型的分类 根据需求量是随机性的或确定性的,存贮模型分为两大类: 1. 确定性存贮模型 2.随机性存贮模型 当存贮系统的输入、输出具有多个随机变量时,库存的最优决策借助计算机仿真模型。 实践的库存系统多是动态的,输入和输出量不仅是时间的函数,还有风险要素. .1.3 存贮费用存贮系统的费用有: 1存贮费Fh:用于物资的保管,货物蜕变的损失,购买物资占用的资金利息、保险费等。库存物资越多,时间越长,这笔费用越大,以每件物品存放单位时间所需的费用ch费用/
7、件.时作为计量单位,称存贮费率。 2 订购费或消费预备费Fo或FP:物资入库前发生的一次性费用。采购员的差旅费、各种手续与通讯费,到货验收入库费;消费物资存贮时,用于改换模具、改装添置设备等消费前固定费用。 与订货或消费的数量多少无关。. 定购量或消费量越大,分摊到单位物资的费用越小。订购费或消费预备费与订购或消费的批次成正比。每次订购费用记为Co费用/次,每次消费前的预备费用记为Cp费用/次。Co与Cp分别称为订购费率与消费前预备费率。 3缺货费FS:库存物资耗费完,发生供不应求时的损失费用,如停工待料损失、失去销售时机损失、未能履行合同的罚款等。单位时间内缺货一件支付的损失费用记为Cs费用
8、/件.时。Cs称为缺货费率。 物资本身的费用由需求方负担,从存贮系统的输入转移到输出,在分析模型的经济数量目的是不计入。在仓库单独运营核算、物资在存贮其间发生价钱变动、决议能否接受优惠零售价钱时,需思索物资的购入 本钱。.1.4 存贮战略 存贮系统明确了决策环境输入方式、需求性质、数量规律、能否允许缺货、以及可供选择的条件等,需决策:什么时候应补充库存物资?每次订购或消费多少?最低库存量程度与提早订购期的关系?在方案期内需外出定购的次数多少? 常用的库存量控制战略: 1循环战略:每经过一确定的循环时间t检查库存,补充数量Q 的物资,是定期控制法。 2 订货点法:以订购期内的平均需求量为库存最低
9、量订货点,实践库存量下降到最低订货点时,进展规定数量的订货,时定量控制法。优点:不会发生缺货脱销,能保证消费的正常进展。. 定量控制法的另一种方式是限量补充战略,称为(s,S)战略: 固定一个库存的最高限额S如库房容积限制等以及一个库存最低规范s,经过经常检查实践库存量,当Xs时即发出订单,补充库存到最高限额S。发出订货弹道货物入库这段时间tL内要继续耗费库存,设单位时间内的平均耗费量需求量为R,订购批量为Q=S-X+RtL。 3 混合式战略:定期检查库存量,当实践库存量Xs时发出订单。优点:防止了订货点法需求经常检查的费事,并且能减少订购次数,订货费用也低。缺陷:需求动摇大时能够发生缺货。为
10、防止缺货,缩短检查周期-订货点法。.不缩短检查周期,为了保证不缺货,要思索保险贮藏。 上述库存控制战略,对库存量限额、检查周期,往往是凭仓库任务阅历给出,因此订购批量、订货周期和订购次数都不一定是最优的。评价一种库存控制方法,要看该方法所破费的总费用是多少-建立存贮的数学模型,进展定量优化,辅助管理。.第 二 节 确 定 性 存 贮 模 型2.1 订购物资存贮模型 确定性的定购物资存贮模型:输入物资从货源采购而来,输入速率A,每一周期订购一次且数量不变,提早订购时间确定;存贮费率一定,没有平安存贮量的要求;需求率是确定性的。2.1.1 不允许出现物资短缺的情形 短缺损失费用率Cs为无限大。每批
11、订货物资量Q到达后立刻入库,然后以每单位时间天、周、月等耗用R的速率输出,库存量逐渐减少,经过一个周期用完,这时第二批货物恰好补充入库,不会出现短缺景象,由此开场第二周期的循环。订购物资需提早一定时间tL,当存贮程度到达L时就应开场订货。.ttL0QR时间库存量LQ订购点 每周期订购一次,每次的定购费为C0,(费用/次;存贮费率为Ch费用/件.时; 输出速率R为单位时间内的库存耗用量,在耗用率为常数的情况下可写为R=dQ/dt,再不缺货模型中,一个周期t内的耗用量Rt数值上等于周期开场时的库存量Q,即Q=Rt。. 设t时辰的库存量为Q ,有Q =Q-Rt ,那么一个周期t内的总库存量为ttL0
12、QR时间库存量LQ订购点.一个周期内的平均库存量为:一个周期内的存储总费用为单位时间内的总存储费率为:令得总存贮费率最小的经济订货批量Q*(EOQ).哈里森最优批量平方根公式威尔逊公式。Qff*f0*f0fh最优存贮周期最优存贮费用率假设按最优的经济订购批量Q*作最大库存量, f0*= fh*=1/2f*.最优订购次数 研讨期T内,需求率R不变,总需求物资量为RT,那么T时期内的最优订购次数为:存贮程度 设提早订购时间tL为知,为了不缺货及时补进Q*,此时存贮程度为:依此数确定订购点。. 【例6-1】某厂需用工业燃料每月200吨,其单价为60元/吨,该厂不允许短缺此燃料,故必需有一定储存量以保
13、证每天的需求。假设以月计,一个月的存贮费为燃料价钱的5%,每一次的定购费为5元。试作出经济定购存贮决策。 解:按经济订购批量。依题义有: 存贮费率 Ch=600.05=3 (元/吨月, R=200吨/月,C0=5元/次那么经济订购批量为吨/次.每月需订购次数为(次/月) T =1个月订购(存贮)周期为(月) 3873天总存贮费用率为 (元/月)设提早订购时间需2天,那么存贮程度为 L=RtL=2002/30=13.3吨当库存量下降到 13.3吨时,应立刻订货。.Q*=25.8L=13.33.87天1月订购点经济订购批量耗用. 假设仅从保证供应的角度思索,每个月的需求量R=200(吨/月,在月初
14、一次购入,到月末用完,绝不会短缺燃料。设每天燃料耗费平衡即R为常数,月初入库量Q=R=200吨可作出当月库存量变化图的一次订购直线。此时存贮总费用率为:元/月=4f* 可见,一次购进从经济方面看是极为浪费的,其缘由请自行分析。 本例阐明了这样一种库存战略思想:当订购费较之存贮费为很小时,为了节省存贮费用,宁可多采购几次,而不应盲目的去大批量一次购进全部需求量。.2. 1. 2 允许出现物资短缺的情形 允许出现物资短缺的库存和需求如图:开场时库存为H,需求速率R为常数,经过时间t1 物资耗费完,要等待一定时间t2 才干进货,此时短缺物资量为S=Rt2,当 下一批订货到达时,立刻弥补 短缺量S ,
15、故对仓库来说,最大库存量就减少到 H=QS-S ,此时S=QS-H。t2t1tLtSHSQSLR时间库存量定购点. 设每周期订购一次,每次订购费为C0费用/次;存贮费率为 Ch(费用/件时);输出速率R为单位时间内的库存耗用量,在耗用率为常数的情况下有:短缺损失费率CS费用/件时)。 由于物资短缺呵斥附加缺货费,所以存贮总费用FS是订货费F0、存贮费Fh、缺货费FS之和:一个周期.一个周期内的总存贮费用为:单位时间内的总费用率为:令得 式中 Ks=Cs/Ch+Cs 称为缺货费系数。解上面方程组,得.不缺货库存模型中的最优量因此有6-17. 在时期T内,需求率R不变,总需求物资量为RT,那么在T
16、时期内的最优订货次数为 设提早订货时间为知,存贮程度为: 对上述公式的进一步分析,还可以得出以下结论: 由于缺货费系数 实践的最大库存量H*比不缺货模型的经济订购批量Q*要小,即平均库存量小,用于存贮的保管费用等也小. 最优存贮周期 ts*比不允许缺货模型的最优存贮周期 t*要长,即 另外,前者多个缺货时间 t2,导致6-18式的结果,即在一样的总需求量 RT 条件下,订购次数 相比之下订货次数减少了,于是订购费用下降。 本缺货模型的总费用中虽然添加了一项缺货费Fs,但由于上述、两条缘由,总费用率下降,即:. 总费用率 ,下降不算太多,此时就可近似看成是一种不允许缺货模型;假设缺货费率不大,例
17、如,Cs=Ch,那么总费用率下降明显。下降的幅度取决于缺货系数KsCs/Ch 1 2 3 4 5 6 当Cs/Ch25 时,即缺货费Cs 大到存贮费率Ch 的25倍时,缺货模型如能实现,是一种费用少,且订购次数也少的较优模型. 缺货模型一次订购量Qs*大与不缺货模型的经济订购批量Q*,其作用是用于弥补缺货量S*,或补充动用的物资保险贮藏。 “极限库存的概念: 不缺货模型中作为最大库存量的经济订购批量依赖比值C0/ChC0呈下降趋势:通讯技术兴隆、定购手续简化;Ch呈上升趋势:仓库基建费用高、保管费用和工人工 资高、占用流动资金的利率提高。现代最优库存控制:尽量以极低的库存量,维持低水 平库存,
18、节省费用,释放占用资金。.缺货模型的最大库存量正比于Ks的开方 当缺货费率Cs 很小时即缺货呵斥的损失极微,最大库存量H*就能降到一个极小程度。当缺货对消费运营活动影响不大时,就应该实现“极限库存。 “极限库存确实定是一个多要素、多目的的决策问题,要根据消费运营的环境动态地综合思索。. 【例6-2】 某厂每月需某物品300件,订购费率C0=10元/次,存贮费率Ch=0.1元/件月。缺货损失费率Cs=0.3元/件月。试作出订购存贮决策。解:缺货费系数经济订购批量为件/次.定购存贮周期为月29天每月需订购次数为次/月,T=1个月允许短缺的物品量为件/月.最大库存量为件/月存贮总费用率为元/月设运输
19、时间为tL= 0.3月。那么当库存量下降到 L=Rt-S*=3000.3 71=19件时。 应立刻订货。.2.2 批量消费存贮模型 确定性的批量消费存贮模型:输入物资是经过消费提供的,边消费边入库,输入的速率A为一定值,输入同时存在输出;输出速率R为一定值,为坚持批量消费停顿后仍有足够库存量H以满足需求,输入速率A应大于输出速率R,即AR;存贮费率Ch一定。2.2.1 不允许缺货情形消费存贮和需求过程如图:开场时,以A的速率消费.开场时,以A的速率消费入库,同时以R 的速率输出,故净输入率为 A R。在批量QA的消费时间tP内,实践的最大库存量H=A-RtPQA=Atp。批量消费停顿后,继续以
20、R速率耗用库存,经t R时间物资耗完,应及时消费入库。应提早t L时间预备消费。tAtRtPHQARAA-RA-RR消费预备点净输入率为A-RL时间库存量. 为了不至呵斥缺货,在一个周期tA时间内必需保证符合关系Atp=RtA,即消费总量等于耗用总量。并且,最大库存量可表示为 引入消费纯输入速率系数那么 设每周期tA 预备一次消费,每次消费前预备费为Cp费用/次;存贮费率为Ch费用/件时;输出速率R为单位时间内的库存耗用量,在耗用率为常数的情况下R=QA/tA=H/tR。. 一个周期tA内的存贮费为单位时间内的总存贮费率为令得使fA 最小的经济消费批量QA*为:.最优消费存贮周期为最大库存量最
21、优总存贮费率时期T内,需求率R不变,总需求量为RT,那么在T时期内最优消费次数为.设提早时间tL为知,那么存贮程度为 上面的Qp * 、tp*、fp*表达式与公式6-6、6-7、6-8相比,差别仅在于用Cp取代C0;上面以组公式与6-17相比,差别仅在于用系数KA取代Ks。且当A时,消费批量模型就成为订购批量模型。 实践最大库存量H*小于经济消费批量QA*,即H*=KAQA*QA*,由于产品存贮期间tp内存在需求的耗用量。. 【例6-3】设对某物需求量为3件/小时,而其消费速率为18件/小时,存贮费率为0.004元/件小时,批量消费前预备费为50元/次,消费前预备时间为12小时。试作出消费存贮
22、决策。解:R=3件/小时,A=18件/小时,Ch= 0.004元/件小时, Cp=50元/次,tL=12小时,从而经济消费批量为:件.最优消费存贮周期小时最大库存量H*件最优总存贮费用率元/小时存贮程度 L=RtL=312=36件.2.2.2 允许缺货的情形时间t3t1t2tst3tptAsSAMHAA-RRADtLL库存量周期每次消费前预备费用Cp;存贮费率Ch;输出速率R,.在耗用率为常数情况下,R=QAs/tAs=HA/t3=SA/ts缺货损失费率Cs费用/件时,存贮总费用FAs是消费前预备费Fp、存贮费Fh、缺货费Fs之和。最优存贮周期: 允许缺货的批量消费模型的建模、求解过程与前面模
23、型类似:先思索一个周期内的总存贮费用,再转换为单位时间的总存贮费用率,然后求其最小值。即对单位时间的总存贮费用率求偏导数,令偏导数为0,同时,令 ,可得:.最大库存量最优消费批量允许缺货量总存贮费用率.2.3 确定性存贮模型的讨论 2.3.1 经济批量灵敏度分析公式中所含各项参数对批量有影响,因此对总存贮费用也有影响。1参数R、C0、Ch对Q*的影响 无论R、C0、Ch能否估算有误,经修正代入,经济订购批量Q*仅以平方根关系变动,影响并不显著,故Q*计算式又称平方根公式。 需求率由100件/月添加到200件/月时,经济订购批量只添加到1.41倍。.2Q偏离Q*时对总存贮费用率 f 的影响当实践
24、订购批量Q偏离经济订购批量Q*时,由图6-6可见:当Q Q*时,总费用率 f 将有所增大,但不太显著,即正偏向灵敏度低;当Q Q*时,总费用率 f 增大较明显, 即负偏向 灵 敏度较高。因此, Q偏离Q*对 f 的影响随Q值减 小而加强 。Qff*f0*f0fh.2.3.2 物资价钱变动时订购战略讨论1在市场采购物资时,经常会遇到如一次超量采购采购批量Q大大超越Q*,可获得价钱上的优惠条件,接受这种优惠条件就意味着总存贮费用增大,并占用大量的流动资金。 接受或不接受这种优惠条件,必需计算采购物资单价变化条件下的总费用包括购货款,并与按Q*值订购时的总费用比较后才干做出正确决策。. 【例6-5】
25、某工厂耗用钻头2000件/年,钻头单价为15元/件,每年存贮费为单价的20%,每次订购费C0=50元/次。现供货单位提出:假设一次购买2000件以上,那么单价可优惠3%。问:能否应接受供货单位的优惠条件?解:先不思索优惠条件采用经济订购批量定购 依题意有R=2000件/年,Ch=1520%元/件年,C0=50元/次,那么经济订购批量为:件/次一年内的订购次数为:次次.年支付总费用包括购货款在内为:F1=购货费+存贮总费用F =购货费+订购费F0+存贮费Fh =200015+C0n*+Ch1/2Q*t =200015+508+150.21/22581=30787元接受优惠条件,一次采购2000件
26、,那么年支付总费 用包括购物款项为:F2 =购货费+订购费F0+存贮费Fh =20001597%+C0n+Ch1/2Qt =2000 1597%+501+ 1597%0.21/220001=32060元一次购进2000件,占用大量流动资金故不应接受优惠条件.2卖主采用区段优惠价钱。 【例6-6】设某厂需用一机件R=10件/月,订购费C0=16元/次,存贮费率Ch=0.3元/件月。机件单价为订购量单价(元/件)1495.250994.9100或更多4.6试决议经济订购批量。解:采用经济订购批量订购件/次一年内订购次数为:次/年.年总支付费用为: F1 =购货费+订购费C0+存贮费Ch = 101
27、2 5.2+164+0.3121/2331 =747.4元/年假设接受一次订购60件,订购2次,单价为4.9元/件优惠价,那么年总支付费用为: F2=购货费+订购费F0+存贮费Fh =10124.9+C0n+Ch1/2Qt =10 124.9 +162+0.3121/2601 =728元/年因 F2F1,故可接受此优惠条件。.假设接受一次订购120件。订购一次,单价为4 . 6元/件优惠价,那么年总支付费用为: F3=购货费+订购费F0+存贮费Fh =10124.6+C0n+Ch1/2Qt =10 124.6 +161+0.3121/21201 =784元/年因 F3F2, F3F1 ,故不应
28、接受此优惠条件。经济订购批量为60件/次。实践存贮问题:需求是时间的函数,订购批量消费批量受仓库容量、可用流动资金的限制等。线性或离散性关系下线性规划或动态规划处置。更复杂情况非线性规划或泛函分析。.3. 随 机 性 存 贮 模 型 在实践消费和运营活动中,往往会出现一些偶尔要素,它们影响某种物品的供应量、需求量、提早期等,其中特别是需求量较多的表现为随机性。这种随机性,从过去的历史统计资料总可以找到其概率分布。随机变量能够是离散型的,也能够是延续型的,故分离散型随机存贮模型和延续型随机存贮模型进展讨论。.3.1 需求量为离散型的随机存贮模型3.1.1 引论 “卖报童模型:报童卖报,每天卖出去
29、的报纸份数是需求量-离散型随机变量。报童向邮局订购报纸:假设订购过多,余下的退回邮局要赔偿损失费;假设订购过少,那么所得的收益会减少。于是产生问题:终究订购多少份报纸为好? 类似的问题:工厂需求某种原料或机械零件,由于管理不善,消费过程不稳定或其它缘由致使对它的需求率是离散随机变量,存贮多了要付出过多的存贮费,存贮少了那么要付出缺货停工的损失费,求解总的费用到达最小的订购量。. 3.1.1 这类模型的求解方法有两种: 获利期望值最大;损失期望值最小。【例6-7】设报童每日出卖报纸的分数为X,根据过去历史纪录统计售出X的概率分布为Px,如表所示。又设订购份数为Q百份,售出1百份赚元,退回1百份赔
30、元,为使收益最正确,试求Q的最正确值。X(百份)89101112131415P(x)00.050.150.200.400.150.050解:1用获利期望值最大法:.供过于求时xQ,这时报纸只能售出x,共赚 x元,未售出的报纸,每份赔元,损失为 Q - x ,盈利的期望值为:供不应求时xQ,这时因短少报纸而少赚钱损失,只需Q份报纸可供销售,误滞销损失盈利的 期望值为:.91011121314 获利期望值0.050.150.200.400.150.0599 9 9 9 9 9 9 109 - 10 10 10 10 10 9.95 -0.05 119 - 210 - 11 11 11 11 10.
31、75 - 0.25 129 -310 -2 11 - 12 12 12 11.35 - 0.65 139 -4 10 - 311 -2 12 - 13 13 11.55 - 1.45 149 -5 10 -4 11 -3 12 - 213 - 14 11.60 - 2.40 .当=1,=1时,有 最正确订购份数Q*=12百份,最大获利期望值 :元当=1,=3时,有 最正确订购份数Q*=11百份,最大获利期望值 :元. 显然,因赔偿费大,报童订购的份数小于概率Px最大值0.4对应的需求份数x=12,以防止风险损失。 由上例可知:当接近 值时,由于Px 的分布明显呈单峰特性,因此,对表6-2可省去
32、小概率对应的定购量Q行的计算,即 Q =9, Q =14这两行可不用列于表中,计算结果不会漏掉获利期望最大值。这样,当Q的离散值较多时,计算总量并不会由此而增大很多。2用损失期望值最小值法: 损失分赔偿损失和失去销售时机收益损失两种。. 供过于求时xQ,这时报纸因不能售出而承当的损失,其期望值为:供不应求时xQ,这时因短少报纸而少赚钱损失,其期望值为:综合、 两种情形,当订货量为Q时,总损失的期望值为:.91011121314 获利期望值0.050.150.200.400.150.0599 9 9 9 9 9 9 109 - 10 10 10 10 10 9.95 -0.05 119 - 21
33、0 - 11 11 11 11 10.75 - 0.25 129 -310 -2 11 - 12 12 12 11.35 - 0.65 139 -4 10 - 311 -2 12 - 13 13 11.55 - 1.45 149 -5 10 -4 11 -3 12 - 213 - 14 11.60 - 2.40 .当=1,=1时,有 最正确订购份数Q*=12百份,最小损失期望值0.9元。当=1,=3时,有最正确订购份数Q*=11百份,最小损失期望值1.6元。. 【例6-7】某商店出卖年画,每售出1百张得7元,假设售不出去,折价处置赔4元/百张,市场销售情况如表,试确定最正确订购量Q*。需求量X0123456统计概率P(x)0.050.100.250.350.150.100解:用获利期望值最大法:列表计算。.0123450.050.100.250.350.150.10000000001-4777776.452-831414141411.83-12-11021212114.34-16-5617282812.955-20-9213243510.25最正确订购量Q*=3百张,最大获利期望值为14.3元。留意:此题还可以用损失期望值最小法求解。.3.2 需求量为延续型的随机存贮模型 当需求量为延续型随机变量时,构造总损失最小的库存量模型的根本方法与上述类似,只需将延续型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公路文明施工合同协议书
- 2025年高线密度玻璃纤维直接无捻粗纱合作协议书
- 整改提高阶段动员大会上的讲话
- 美国低碳融资战略演进的驱动因素解析
- 2025年木板材加工项目合作计划书
- 2025年驱油用表面活性剂(磺酸盐类)合作协议书
- 2025年家私皮具护理品项目合作计划书
- 紫巅风的护理
- 儿童骨折护理
- 安全转运病人的流程
- 违约就业协议书
- 《人工智能通识导论(慕课版)》全套教学课件
- 烘培创业合伙协议书
- 北京2025年国家大剧院招聘24名专业技术人员笔试历年参考题库附带答案详解
- 2024建安杯信息通信建设行业安全竞赛题库及答案【三份】
- 2025年信息系统管理知识考试试题及答案
- 中介股东合同范例
- 马法理学试题及答案
- 2025年全国保密教育线上培训考试试题库附完整答案(夺冠系列)含答案详解
- 合伙人协议书模板
- 2025年下半年扬州现代农业生态环境投资发展集团公开招聘易考易错模拟试题(共500题)试卷后附参考答案
评论
0/150
提交评论