




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章 地震波的动力学特征 郑重声明:前面部分有很多只是为了加深理解,之中,公式一定记住,对于众多要考试的重点文字部分, 教育学认为能掌握核心思想,然后能够能用自己的语言表达出来就很好。后面部分是补充内容,随便看看 四种常用的地震地质模型 () :(必考)1、理想弹性介质和粘弹性介质模型:按作用在岩石上的外力大小和时间长短,以及岩石是否具有粘弹性划 分。2、各向同性介质和各向异性介质模型:按岩石固体的弹性性质划分。3、均匀介质、层状介质和连续介质模型:按地震速度的空间分布规律划分。4、单相介质和双相介质模型:按组成岩石的岩相特性划分。 物体受外力后发生形变,但当外力撤消后,又能立即恢复为原来体
2、积和形状的物体,称为理想弹性介质或 完全弹性介质。岩石固体既有弹性,又表现出像粘性流体那样的粘性,称这样的物体为粘弹性体。当外力 很小且作用时间很短时,大部分物体都可近似地视为弹性体。反之,固体显示为塑性,甚至发生破碎。2各向同性介质: 按岩石固体的弹性性质划分,凡岩石的弹性性质(弹性常数 )与空间方向无关的固体,就称之为各向同性介质,如沉积比较稳定的岩层。在各向同性介质中,弹性常数只有两个: 和 (拉梅系数 ),它们不随空间方向而变化。 各向异性介质: 凡岩石的弹性性质随空间方向而变化的固体,就称之为各向异 性介质。3凡速度值不随空间坐标而变化的介质就称之为均匀介质。特点:速度是均一的常数。
3、在 vH 坐标中,速度是一个平行于 H 轴的直线。 如果地下介质的性质表现出成层性,其中每一层的速度值是相同的,不同层之间的速度值是不同的,称这 种介质为层状介质。每层介质中速度值相同,不同层中速度不同。在 v H 坐标中速度呈阶梯状。层状介质中,地震波的速度叫层速度。 波速是空间连续变化函数的介质定义为连续介质。 连续介质是层状介质模型的一种极限情况, 当层状介质 中的层数无限增加、每层的厚度无限减小时,层状介质就过渡为连续介质。速度随深度的增加而连续变化。在 vH 坐标中,速度是一条斜线 (线性连续介质 )或一条平滑曲线 (非线性连续介质 ) 。对于线性连续介质v(z)=v0(1+ z)式
4、中: v0 为初始速度, 为速度随深度变化的函数, z 为深度。该模型比较接近地下岩层的实际情况。 (4)非线性连续介质。 v(z)=v0(1+ z) 1/n,n 是大于 1 的常数。(5)在连续介质中,地震波的速度叫真速度。Copyright reserved by Gui qianzhuang.061113单相介质模型:当建立各种介质模型时,把组成地层的岩石都视为单一固体相的介质,我们称之为单相介 质 (Single-phase medium model) 。双相介质模型:大部分岩石从结构上看, 都是由两部分组成, 一部分是矿物颗粒本身, 称之为岩石骨架 (基质);另一部分是由气体或液体充
5、填的孔隙。因此,地震波在岩石中传播时,实际上在岩石骨架和孔隙两 种介质中传播,我们称这种岩石为双相介质(Two-phase medium model) 。体波、瑞雷波、绕射波的动力学特征:1、纵波2、横波3、瑞雷波4、绕射波1&2在地震勘探中,无论是用炸药震源还是非炸药震源,一般都是向外产生均匀对称的压缩力,使质点发生体 变,故主要产生纵波。 由于地层的不均匀性和激发作用的不对称性, 使质点产生切变, 故同时也产生横波。 在石油地震勘探中目前主要是利用纵波勘探。横波( S) Secondary Waves体波 (纵波和横波 )动力学特征 纵波( P ) Primary Waves弹性介质发生体
6、积形变所产生的波动 现为各质点间的膨胀与压缩 ) 是一种胀缩力形成的波(表 弹性介质发生切变时所产生的波动 ( 表现为各 质点间的切向滑动 ) 是一种旋转力形成的波质点位移的振动方向 (极化方向 )与波的传 质点位移的振动方向与波的传播方向垂直 播方向一致 (如,声波 )。它是线性极化波。 (如,绳波 )。它也是线性极化波。速度 :VP(+2)/ )1/2 :剪切模量 ;:拉梅常数 ;:密度 对于同一岩石,纵波永远大于横波 可在任何介质中传播吸收系数小,能量强,频率高,频带宽; 容易激发和接收, 在地震记录中容易观测波速: VS(/ )1/2当泊松比 0.25时, VP/VS 1.73,所以远
7、 离震源时总是纵波先到检波器 只在弹性固体介质中传播,即液体或气体中 没有横波,因为剪切模量 0 吸收系数大,能量弱,频率低,频带窄;不 易激发和接收,在地震记录中难观测具有球面扩散 (波前扩散 )现象,即纵波振 动的强度随波传播距离 r 的增大而反比减 小。振幅 A 1/r 。也具有球面扩散现象,即横波振动的强度随 波传播距离 r 的增大也反比减小。振幅 A 1/r。面波 (Surface Waves) 传播的动力学特征Copyright reserved by Gui qianzhuang.061113(二)瑞雷波的特点在均匀弹性半空间介质中,瑞雷波速度与频率无关,即无频散现象。但在层状介
8、质和其它非均匀介 质中瑞雷波具有频散特性(Dispersive) ,即瑞雷波的相速度随频率的变化而变化,称之为频散曲线(Dispersion curve) 。通常相速度随频率的增高而逐渐减小。瑞雷波相速度与横波速度密切相关,且小于横波速度。瑞雷波质点的振动轨迹是一个向震源逆进的椭圆,具有椭圆极化振动特性。椭圆平面与波的传播方 向一致,长轴垂直于地面,短轴为水平的,长轴为短轴的 1.5 倍。瑞雷波能量在纵向上随深度迅速衰减,其穿透深度约为一个波长。不同频率的面波(波长不同 )其穿透深度是不同的,高频穿透浅 (波长小 ),低频穿透深 (波长大 ) ,所以瑞雷波法也叫弹性波频率测深法。瑞雷波能量在横
9、向上随传播距离衰减缓慢,其振幅: A 1 瑞雷波在横向上衰减比体波球面扩散慢得多,故在远离震源处其A能量可r能强于体波。瑞雷波的波前面为圆柱面,与瑞雷波有关的振动发生在厚度为r 的圆柱层界限内,圆柱层外围为其波前,内周为其波尾。不受各地层速度关系的影响。折射波法要求下伏介质的速度大于上覆介质的速度,否则则为勘探中 的盲层;反射波法要求上下两层介质之间要有较大的波阻抗差;而瑞雷波法即使上下介质波阻抗差很小, 但只要满足非均匀介质即可。瑞雷面波( R)Rayleigh Waves勒夫面波( L ) Love Waves沿着介质的自由表面 (地表面 )传播的弹性波沿着岩层分界面传播的弹性波质点的振动
10、轨迹是一个向震源逆进的椭圆, 椭圆平 面与波的传播方向一致, 且长轴垂直于地面, 短轴 为水平的,长轴为短轴的 1.5 倍质点振动的方向与波的传播方向垂直,质点振动平面平行于岩层界面具有低频低速的特点, 其在地震记录中呈发散的扫 帚状。同一介质中瑞雷波相速度近似为横波的 0.870.95 倍,为纵波的 0. 5 倍,即VR=(0.87+1.12 )/(1+ )VS=0.870.95VS相速度 VS1VLVS14实际的地下介质,分界面并不总是连续的、无限延伸的,经常有复杂地质结构出现,如断层的断点、岩性 尖灭点、 侵蚀面上的棱角点等, 它们构成了地层的间断点。 根据惠更斯原理, 地震波传播到这些
11、间断点时, 这些间断点就会作为新的点震源, 由此新震源产生一种新的扰动向弹性空间四周传播, 这种波称为绕射波 (Diffraction Waves) ,这些现象称为地震波的绕射,产生绕射的点称为绕射点。Copyright reserved by Gui qianzhuang.061113 地震波在传播过程中速度的变化:1、影响地震纵波速度的主要地质因素( ):岩石的岩性 (弹性性质 )、孔隙度、孔隙充填物、岩石的密度、地质年代、构造运动和埋藏深度等。 (必考)2、纵双波相、介横质波中、地瑞震雷波速、度绕的射计波算动力学时特间征平均方程(Wylie 方程 ) ( )(必考)1/v(如=(它1-们
12、振)/v幅m与+传/播vL距离的关系、质点振动方向与波传播方向的关系)3、平均速度、均方根速度、射线平均速度和炮检距的计算( ) (必考)4、视速度定义及用途 ( ) (必考)地震波沿测线方向的传播速度,称为视速度。视速度v*=x/t 为时距曲线斜率的倒数。(1)视速度可用于区分反射波和面波。(2)视速度在组合检波中可用于压制面波。(3)视速度可用于判断时距曲线的弯曲程度。5、视速度定理 ( ) (必考) 它描述了视速度 v*与真速度 v 的关系,其物理含义是把在地下用真速度沿射线传播的反射波看作用视速度 沿地面测线传播的波动。根据视速度定理 v*=v/sin 。6、速度空间分布规律 ( )7
13、、由均方根速度计算层速度和平均速度的Dix 公式的推导 ( ) (必考)1(一 ) 岩性对地震波速度的影响1、不同的岩石,由于其弹性性质 (弹性模量 )不同,其地震波速度也不同。2、同一种岩石,地震波速度变化范围也较大。因为影响地震波速度的因素是非常复杂的。3、空气、石油、水速度都较低,且变化范围较小。地震波速度从气(气体或气态碳氢化合物 )、油、水逐渐增高。4、煤 : 16001900 m/s 。5、不同的岩性可以有相同的速度值,致使岩石的性质同速度值不是单值的对应关系。因此岩性地 震勘探不能单纯用速度作为唯一参数来提取岩性信息。(二 ) 孔隙度对地震波速度的影响 1,一般情况下,孔隙度与地
14、震波速度成反比,即对于同样岩性的岩石,孔隙度(Porosity)越大,则地震波速度就越小。因为孔隙中充填的气体或液体的速度比岩石骨架的速度低。2、时间平均方程 1/v=(1- )/vm + /vL3、体积密度方程L (1 ) m(三 ) 孔隙中的充填物对地震波速度的影响 不同的岩石充填物是不同的,所以地震波速度也不同。如砂岩中充填有油、气、水时,其速度会 大大降低,必然使油、气、水之间,以及它们同围岩之间形成良好的分界面(波阻抗界面 ),进而导致反射系数会明显增大,反射波振幅会明显增强。砂岩速度突降和反射波振幅明显增强是含油气 的重要标志之一, 这为油气的预测提供了可能性 (亮点技术 )。利用
15、较为灵敏的反射系数替代速度的 变化有可能预测油、气、水的分界面及直接寻找油气资源(亮点技术 )。(四 ) 岩石的密度对地震波速度的影响1.岩石密度与地震波速度的关系 : 地震波速度随岩石密度的增大而增大。Copyright reserved by Gui qianzhuang.0611132.定量公式:大量统计的经验公式表明 =0.31v(1/4) (五 ) 岩石的地质年代对地震波速度的影响1. 地质年代老的岩层比新的岩层速度高。由于压实作用,地质年代老的岩层比新的岩层密度大。 大量实验统计经验公式: v=a(zT)1/6式中: z为深度 (米),T 为地质年代 (年),a 为系数。2. 构造
16、运动:以挤压作用力为主的强烈褶皱地区,速度值普遍偏高;而以引张作用力为主的张性 断裂发育地区,速度值普遍偏低。(六 ) 岩层的埋藏深度对地震波速度的影响1.地震波的速度随岩层埋藏深度的增加而增大。 因为岩石埋藏越深,承受上覆岩层的压力就越大,致使孔隙度变小,密度变大。2.速度变化的梯度 (变化率 )浅层与深层不同。 浅层速度随深度增长快 (速度变化的梯度大 );深层速度随深度增长慢 (速度变化的梯度小 )时间平均方程 1/v=(1- )/vm + /vL式中: v岩石的速度 ; vm岩石骨架的波速 ; vL 岩石孔隙中充填物的波速 ; 岩石孔隙度。 时间平均方程表明: 在单位厚度的岩石中, 地
17、震波传播所需的时间是地震波在岩石骨架中传播时间 (1- )/vm和在岩石孔隙中传播时间 ( /vL) 之和。多层水平层状介质,其平均速度可写成:nnnhihivitih1 h2hnii1ii1iii1vnh1 h2hnn hinn12nhititiv1 v2vni1 vii1i1平均速度就是地震波垂直穿过地层的总厚度与波沿法线单程传播的总时间之比;或者说平均速度 是在非均匀介质中地震波沿直射线传播的速度。平均速度的特点平均速度与炮检距 x 无关。因为它是指地震波垂直穿过地层的总厚度与波沿法线单程传播的总 时间之比。平均速度不是简单的算术平均,而是各分层的速度对垂直传播时间的加权平均。当炮检距
18、x=0 时,地震波沿法线入射,此时平均速度等于射线速度: ,即平均速 度在 x=0 处才是准确的,在其它地方入射就是对实际介质的粗糙近似。将某个界面以上多层介质等效为具有平均速度的均匀介质, 是对多层介质结构粗糙的近似简化, 它没有考虑射线的折射效应。平均速度可以通过地震测井等方法求取,它主要用于地震剖面时深转换,即 因为在炮点附近的射线是最接近于直线的。均方根速度的导出Copyright reserved by Gui qianzhuang.061113若要近似考虑地震波在多层水平层状介质中传播的折射效应,velocity) 。为此,要建立波沿折射线传播的时间方程和炮检距 在水平层状介质中地
19、震波的射线及波前方程为:就要用到均方根速度 (Root-Mean-Squarex 的方程组,从而求取均方根速度。xnxk1kn1t v 1k 1 vk 1 由上面的射线及波前方程可知,在多层水平层状介质中,地震波的射线为折射线,波前对第一层 是同心圆,对其他层则不是圆。建立以均方根速度表示的多层水平层状介质一次反射波时距曲线方程22t2 t02 n xt02 x2tkvk2vi1 n tk i1 上式中的速度即为均方根速度, 其中 tk 为地震波在第 k 层介质中垂直传播的单程旅行时。 在一定程度上考虑了地震波在多层水平层状介质中传播的折射效应,它比平均速度更进一步。均方根速度的特点(1) 均
20、方根速度与 x 无关,一般均方根速度大于平均速度。(2)当入射角很小 (炮检距 x 真速度 vp。因为反射纵波都是近法线出射于地面,即出射射线与法线的夹 角 很小。面波是沿测线传播的 (=90),面波视速度 vR*= 真速度 vR。由于反射纵波视速度 vP* 真速度 vpvR ,故 vP* vR* 。利用两者的视速度差异在地震记录上就很容易区分反射波和面波。 v*=v/sin (2)视速度在组合检波中可用于压制面波 组合检波对反射波来说,相当于不同位置、时间几乎相同的两个波的近似同相叠加(因为反射波视速度很高,到达组内两个检波器的时差很小),其结果是使反射波振幅成倍增加,从而提高了反射波信号。
21、组合检波对面波来说,相当于不同位置、不同时间的两个波的非同相叠加 (因为面波视速度很低, 到达组内两个检波器的时差很大 ) ,叠加后振幅变小,从而压制了面波。视速度可用于判断时距曲线的弯曲程度视速度 (v*= x/ t)为时距曲线斜率 k 的倒数。即 k=1/v* ,v* 越小,斜率越大,曲线越陡;反之, v* 越大,斜率越小,曲线越缓。对于同一层的时距曲线, x 大 大 v*小曲线越陡; 对于不同层同一接收点的时距曲线,深层小 v*大曲线越缓。5 视速度定理:它描述了视速度与真速度的关系,其物理含义是把在地下用真速度沿射线传播的反 射波看作用视速度沿地面测线传播的波动。由于反射波在不同观测点
22、处其出射角 不同,进而导致其视速度不同。在震源附近 (出射角 很小 ),视速度趋近于无穷大;而在离震源较远处(出射角很大 ) ,视速度趋近于真速度。6在沉积剖面中,速度分布具有如下特点:成层性、这是沉积剖面中最基本的特点,由于沉积剖面的成层性,所以整个地质剖面可以划分为许 多速度不同的速度剖面。递增性、由于受沉积地质作用的控制,在沉积剖面中:1. 速度的分布随深度的增加而递增。 2.速度变化的梯度随深度的增加而递减方向性、 1. 速度在纵向和横向上都发生变化。速度在纵向上(Vertical)随深度而变化,在横向上(Horizontal)由于受地质构造和沉积岩性的控制也将发生变化。2. 速度纵向
23、变化梯度大于横向变化的梯度。若区域中有构造破坏、断层、地层尖灭、地层不整合时,速度水平梯度会发生突变,可见速度沿 横向的变化缺乏一定的规律性。分区性。在不同地区,由于沉积环境不同和岩性变化,速度在平面内的分布具有分区分带的特点。 在不同区域或不同地带,速度随深度的变化规律及其梯度变化形式不同。Copyright reserved by Gui qianzhuang.0611139Copyright reserved by Gui qianzhuang.061113地震波在传播过程中振幅和频率的变化:1、地震波在传播过程中,影响其振幅的主要因素( ):波前扩散、介质吸收、透射损失、反射系数(必考
24、)An A0 e r 1 Ri2 Rn A0 e 0 fr 1 Ri2 Rn(必考)r i 1 r i12、地震波频谱特点:如对同一界面,反射纵波比反射横波主频高、频带宽() (必考)(一 ) 波前扩散 Spherical Spreading 在均匀介质中,震源为点震源时,波前面为球面。随着传播距离的增大,球面逐渐扩大,但从震源发出的 总能量保持不变,则单位面积上的能量相对减少了,振幅也就变小,这就是球面扩散(波前扩散 )。(二 ) 吸收衰减 Absorbed Attenuation 实际介质并非是完全弹性介质,故地震波在实际地层中传播时,能量的衰减要比在完全弹性介质 中大得多, 这主要是由于
25、地震波的一部分能量用于克服质点的内摩擦而产生热能损耗掉了 , 从而使 地震波振幅变小。这种由于介质的非完全弹性而引起的地震波振幅衰减现象称为介质对波的吸收 衰减,或介质吸收。随着传播距离的增大,地震波振幅按指数规律迅速衰减。地震波的频率越高,振幅衰减越大,即高频成分更易被吸收。因为( f) 0 f ,即吸收系数与频率成正比,在其它条件相同的情况下,高频成分更易被吸收。不同岩石的吸收衰减是不同的。 表层松散地层吸收系数大, 振幅衰减快; 致密坚硬的岩石吸收系 数小,振幅衰减慢。横波的吸收系数大于纵波的吸收系数, 故横波吸收衰减比纵波衰减快,导致横波不易被接收。(三 ) 透射损失 Transmis
26、sion Loss 地震波在传播过程中,当遇到地下岩层分界面时,一部分发生反射,一部分发生透射。根据能量 守恒定律,入射波的总能量等于反射波能量和透射波能量之和。这种地震波传播时透过界面所发 生的能量损耗,称为透射损失。透射损失与透过界面的反射系数大小和反射界面的数目有关。透过界面的反射系数越大,反射界面越多,则透射损失就越大。反射界面数目是透射损失的最主要因素。(四 ) 反射系数 Reflection Coefficient 反射系数是影响地震波振幅的主要地质因素。当地震波垂直入射到两种弹性介质分界面时,反射系数 R=AR/Ai ,可见若入射波振幅 Ai 一定,则反射波振幅 AR 大小完全取
27、决于反射系数 R 的大小。 R 绝 对值越大,则反射波振幅就越大,表明被反射回去的地震波能量就越强。(五 ) 波的散射 Scattering of Seismic Waves 波在传播过程中,遇到粗糙不平的界面(如侵蚀面、凸凹不平的表面 )时,波将向四周反射,结果使地震波能量分散,振幅衰减,频率变低,这种现象称为波的散射。2地震波频谱特点10(一 ) 不同的波具有不同的频谱Copyright reserved by Gui qianzhuang.0611131.面波主频较低,在 10-30 Hz 范围。2.直达波、折射波主频,在 20-50Hz 范围。3.反射波主频,在 30-60Hz 范围。
28、4.声波干扰主频,在 100 Hz 以上的高频范围。5.风吹草动等微震干扰频带较宽,在 60-250 Hz 范围。6.工业交流电干扰主频在 50Hz ,且频带很窄。 如果采用先进的数字地震仪和低频检波器,可拓宽面波、反射波、折射波等频带范围。 各种波频谱分布范围不同, 可利用这些差别进行波的识别、 频率域数字滤波, 以提高地震资料信噪比。(二 ) 同一界面反射纵波比反射横波具有较高的频谱和较宽的频带由于 vSZn-1 时 , R0, 反射波为正极性 (Positive Polarization) 。 表明入射波由波疏介质向波密介质入射时, 反射波与入射波的相位相同。即若入射波波前以压缩带到达反
29、射界面,反射波波前也是压缩带;若入射波波 前以膨胀缩带到达反射界面,反射波波前也是膨胀带。当 ZnZn-1 时 , R0, 反射波为负极性 (Negative Polarization) 。 表明入射波由波密介质向波疏介质入射时, 反射波与入射波的相位相反,相差 180 度。即若入射波波前以压缩带到达反射界面,反射波波前变为膨胀带; 若入射波波前以膨胀缩带到达反射界面,反射波波前变为压缩带。这种现象在物理上也通常称为半波损失。2 透射波形成的条件 : 时,透射波就很微弱。T透射系数取值范围:只要上下层介质波速不为零,透射波总是存在的;当上层介质速度比下层波速小很多AT Ai AR 1 R 12
30、v21v1AiAi2v21v11v1 2v2 Z1 Z20Tv1;入射角达到临界角 (在盲区以外 );对于单个倾斜界面 i900( ) (必考)3、折射波的的动力学特征4、折射波的的运动学特征:单个水平界面、单个倾斜界面、多层水平层状介质折射波时距曲线方程推导 及特点;弯曲折射界面的穿透现象113根据透射定律 sin/v1=sin/v2, 当 v2v1 时,透射角 大于入射角 ,随着入射角 增大,透射角 也 增大,当 增大到某一个角度 i 时,可使透射角 =90,这时透射波就以 v2的速度沿界面向前滑行,我 们称这时的透射波为滑行波。根据惠更斯原理,高速滑行波所经过的界面 II 上的任何一点都
31、可看作是一 个新的点震源。过了临界点 A 以后,由于滑行波比入射波速度大,所以滑行波比入射波先到达分界面上 的各点,这样介质 II 中的质点就要先发生扰动。由于界面两侧的介质质点间存在着弹性联系,所以介质Copyright reserved by Gui qianzhuang.061113II 表面上的质点振动必然要引起上面介质 I 中质点的振动,这样就在介质 I 中形成了一种新波,这种新波 在地震勘探中称为折射波或首波。纵波入射到界面 R 上将产生反射波和透射波, 当入射角达到临界角 iPP 之前,入射波、 反射波和透射波的 波前是相连的。当入射角达到临界角 iPP 时,使透射角达到 90,
32、此时透射波沿界面以 vP2 的速度向前 高速滑行,其波前面在界面附近垂直于界面。当入射角超过临界角 iPP 时,由于透射波的速度高,透射波 与入射波和反射波的波前脱离,不再连在一起,此时下伏介质质点的振动与上面介质质点的振动脱节,这 与连续介质的边界条件不符。必须有一种新的波动将它们联系起来,这个新的波动就是折射波(P121),也称为首波。折射波的波前与透射波波前相接,与反射波波前相切。2在倾斜界面情况下,并不是任何时候都能观测到折射波。当临界角与界面视倾角之和i900 时得不到折射波。当i900时,折射波射线与地面平行,回不到地面;当i900 时,在上倾方向不能形成折射波,在下倾方向折射波射
33、线向下运行,均不能到达地面被接收到。因此,地层倾角太大不利于折射波法开展工作。.折射波的动力学特点折射波的波前是一平面, 它与界面的夹角为 临界角 i 。它是下伏界面上各点源向上覆介质中发 出的半圆形子波的切线。折射波的射线是以临界角 i 出射的一束平行直线,且垂直于波前面BC。折射波存在着盲区 (OM) ,必须在盲区以外才可观测到折射波。自震源 O 点到 M 点的 范围不存在折射波,这个范围叫折射波的盲区。 v 2hxM 2htani 2h tanarcsin v1 2h 2(4)AM 是折射波的第一条射线,也是反射波的射线,称v为2临界射(线v2,/v1) 1A 点称为临界点, M 点是折
34、 射波的始点。在 M 点处可同时观测到折射波和反射波,在 M 点以外,总是先观测到折射波。(5) 当地震波的入射角大于临界角i 时,入射波的绝大部分能量都转换为反射波,即在临界点以外的分界面上没有透射纵波产生,这种现象称为波的全反射。14(6)折射波振幅:A 1/ r ,它的波前扩散比反射波的球面扩散慢,即折射波的能量随着远离震源比反射波衰减慢。折射波的波前在三维空间中是个圆锥面Copyright reserved by Gui qianzhuang.061113(7)当横波速度满足 vS1v1,所以二者时距曲线斜率不相等, 直达波时距曲线陡峭,折射波时距曲线相对平缓,故二者必定相交。多层水平
35、层状介质折射波时距曲线n 层水平层状介质,在第n-1 个折射界面上产生的折射波时距曲线方程为 t x n 1 2zk cos k x t0k vn k 1 vk vn15Copyright reserved by Gui qianzhuang.061113第 n-1 个折射界面上产生的折射波时距曲线也是一条直线,其斜率是产生折射波的折射层速度的 倒数 1/vn ,截距时间是 t0k 在地震记录中浅层折射波由于其传播速度慢不一定永远在初至区,有时可能出现在某些深层折射 波时距曲线的后面进入续至区。一个倾斜界面时折射波时距曲线时距曲线方程:图中给出了一个倾斜折射界面地质模型,v2v1,在地面 O1
36、、 O2 处分别激发,在O1O2O1O2 间观测。激发点 O1 和 O2 处界面的法线深度分别为 zu和 zd。在地层上倾方向 O1 点激发、 在下倾方向 O1O2 间观测,称为下倾方向接收;在地层下倾方向 O2 点激发、在上倾方向 间观测,称为上倾方向接收。时距曲线的斜率,即视速度的倒数在下倾方向接收和上倾方向时距曲线方程的特点: (1)时距曲线是两条不对称的直线。 接收以及其截距时间分别为vuv*dv1sin(i )v1t0usin(i )t0d2zucosi v1 2zdcosi v1由此可见,倾斜界面情况下,由于两支时距曲线的斜率不同,因此两支时距曲线是不对称的直线。 下倾方向接收时视
37、速度小,时距曲线陡;上倾方向接收时视速度大,时距曲线平缓。根据这个特 点可以定性的判断地层的倾向。上下倾方向接收的两支相交的时距曲线称为相遇时距曲线。若测线方向与地层倾向一致, 则 O1通常称为正向相遇炮, O2 通常称为反向相遇炮。在 O1 点激发、 O2 点接收与 O2 点激发、 O1 点 接收时地震波的射线路径完全相同,因此这两个特定点处折射波的旅行时间 tr 相等,它们满足互 换原理,这个时间 tr 称为互换时间 (Reciprocal time) 。对于凸界面,折射波可能产生穿透现象,即射线穿过界面传播而不是沿界面滑行传播。这种穿透 波时距曲线的形状与折射波时距曲线相似,干扰了对折射
38、波的识别,若不加仔细区分将很容易造 成错误的地质解释。为了识别穿透现象,可以采用在两个不同位置 O1 和 O2 分别激发,而在同一 地段接收, 得到两支时距曲线。 其中激发点 O2 激发所得的时距曲线 2 称为追逐时距曲线, 激发点 O2 称为 O1 的追逐炮。若两支时距曲线平行,则无穿透现象,(1)可以利用追逐时距曲线与相遇时距曲线的平行性延长解释区间; (2) 确定直达波与折射波的交点; (3)判断有无穿透现象 (有穿透可能 就不平行 )。两相遇炮合格: (1)在折射段有相遇点; (2) 互换时间 T1、T2 之差小于 3ms。地震勘探的纵向分辨率:1、大地滤波作用定义 ( ) (必考)2
39、、纵向分辨率 (垂直分辨率 )定义 () (必考)/2 提高到 /4 。 ( )3、薄层的调谐效应定义 ( ) (必考)164、利用薄层的调谐效应,它可使我们对薄层的纵向分辨能力由Copyright reserved by Gui qianzhuang.061113地震波在实际岩层中传播时,岩石对地震波有吸收作用,吸收了激发脉冲波中的某些高频频谱成分,使其 能量损耗 (大地滤波作用 ) (1)使地震波能量被吸收损耗,地震波振幅变小;(2)使地震波主频降低,周期变大,纵向分辨率降低。地层对地震波的这种作用为低通滤波作用,即由震源发出的尖锐脉冲波,经大地的低通滤波作用后,变成 具有一定时间延续度的
40、地震子波,结果使地震波主频和纵向分辨率降低,振幅变小。这种现象称为大地滤 波作用。2地震记录沿纵向所能分辨的最小地质体厚度,称为纵向分辨率或垂直分辨率(Vertical Resolution) 。此厚度越小,纵向分辨率越高。地震子波延续时间为 t,若满足下列不等式则地层可分辨。t 2 hv3在地震勘探中,定义地层厚度满足下列不等式的地层为地震薄层2hh 或 或 T2 v v 薄层的概念是相对的,因为不同的地震子波具有不同的波长和不同的延续度。 当层厚 h /4 时,相对应的叠加振幅出现了极大值,这种现象称为薄层的调谐效应,这 时的地层厚度称为调谐厚度。4薄层 对振幅的调 谐效应在地 震勘探中是
41、 分辨薄层的 有效手段, 它可使我们 对薄层的分 辨能力由 /2提高到 /4 。地震勘探的横向分辨率:1、狭义绕射和广义绕射2、横向分辨率 (水平分辨率 )定义 () (必考)3、第一菲涅尔带定义 ( ) (必考)4、第一菲涅耳带半径 R 的公式推导, (必考) 利用该公式分析为什么要进行偏移成像() 三种不同的观点来解释 (必考)5. 绕射波的动力学特征: A正比 1/r0.5 ,瑞雷波 A 正比于 1/r0.5 ,体波 A正比于 1/r,折射波 A 1/狭义绕射是指在地层间断点处 (如断层的断点、岩性的尖灭点等 )产生的绕射。根据惠更斯 -菲涅尔原理,地17震波传播到空间的任何一点都可以看
42、成一个新的绕射源(而不必是地层的突变点 )。Copyright reserved by Gui qianzhuang.061113地震记录沿横向所能分辨的最小地质体宽度, 就称为横向分辨率或水平分辨率 (Horizontal Resolution) 。此 宽度越小,横向分辨率越高。第一菲涅尔带:根据惠更斯 -菲涅尔原理和广义绕射的思想,地表某一点 P 处接收到的地震波不是来自地 下界面上某一 “点”的反射,而是地下一小块界面上所有点作为次生绕射源发出的绕射波在 P 点处相长干涉叠加的结果。这个能产生次生绕射波相长干涉的小块面”就称为第一菲涅尔带,简称菲涅尔带。其半径大小为 R 。从广义绕射的观
43、点理解地下界面上的每一点均可认为是一个绕射点, 它们在入射波的激励 下会向界面上方辐射广义绕射 波。地下一个绕射点对应到地震记录上就是一条绕射双曲线,即一大片,这正是一个模横向糊化 的过程。由于真实界面由许多绕射点所组成,它们都辐射绕射波,这些绕射 波双曲线顶点的连线就是地下界面的真实位置。 而自激自收剖面上的视界面是所有这些绕射波双曲线的公 切线,其位置与双曲线顶点连线并不一致,发生了偏离。偏移成像处理就是将绕射波能量正确地会聚于其 双曲线顶点, 结果能量收敛、模糊化消除、界面也自然恢复到其真实位置处(即双曲线顶点连线位置 )。从波场分析的观点理解偏移成像处理也就是将已知的地面处的波场值,即
44、自激自收记录剖面u(x,y,0,t) 作为边界条件反过18来求地下各点处波场值的过程。要想得到地下各点波场值可以将检波器放置在地下这些点处进行 记录,但是这通过实际物理的方法是办不到的,只能借助于数学运算的方法计算出地下各点处的 波场值,因此,偏移成像处理就相当于将检波器不断地向地下移动的过程,故也称之为波场延拓Copyright reserved by Gui qianzhuang.061113或波场外推。 由此可见,在偏移成像处理中,通过数学的方法不断地将检波器向地下延拓,即不断地减小界面 深度 h,从而不断提高横向分辨率 (第一菲涅尔带半径 R 逐渐减小 )。当 h=0 时,即将检波器置
45、于界面处时能得到最高的横向分辨率地震记录 (R=0) ,这正是偏移成像处 理的结果。几何观点5A1(1)绕射波的振幅与波传播距离r 的平方根成反比衰减,即r 由此可见,绕射波相对反射波衰减得慢。(2)绕射波的振幅与入射波频率f 的平方根成反比衰减。即1Af故对于一个非周期的入射波来说,其低频成分的绕射波振幅比高频成分的绕射波振幅相对要大,因此绕射波相对入射波来说具有较低的频率成分。(3)在断点的正上方处接收到的绕射波振幅最强,为正常反射波振幅的一半,向两边绕射波振幅逐渐减小, 直至消失。断点产生的绕射波与平界面的反射波在绕射点相切,以断点(切点 )为界,所接收到的绕射波分为左右半支,构成绕射双
46、曲线,左右两支完全对称,但相位相差180。在剖面上外半支 (正半支 )比较明显,内半支 (负半支 )往往被较强的反射波所淹没而不明显。第二章 地震波的运动学特征在地面接收到的地震波时距曲线均为双曲线:1、单个水平界面共炮点 CSP 反射波时距曲线2、单个水平界面共中心点 CMP 反射波时距曲线3、单个倾斜界面共炮点 CSP 反射波时距曲线4、单个倾斜界面共中心点 CMP 反射波时距曲线5、多层水平层状介质共炮点CSP 反射波时距曲线6、共炮点 (CSP) 与共中心点 (CMP) 时距曲线的异同7、多次波时距曲线8、绕射波时距曲线9、在线性连续介质中能观测到反射波的条件:zmax H ( )10
47、、视倾角、真倾角与测线方位角的关系( )视倾角的范围 (必考)11、法线深度和真深度的关系 ( )119单个水平界面共炮点 (CSP)反射波时距曲线Copyright reserved by Gui qianzhuang.061113时距曲线方程:(2h)2 x2vt22(2h/v)22(2h)2t0=2h/v 称为自激自收时间、回声时间、界面法线双程旅行时; O* 称为虚震源或镜像震源。 共炮点 (CSP)反射波时距曲线特点1.时距曲线为一条关于时间轴对称的双曲线。2.双曲线的顶点 , 即时距曲线的极小点 (0, 2h/v) 总是位于震源点的正上方 , 即 tmin=t0=2h/v 。3.时
48、距曲线对应地下一段反射界面,反射界面的长度为地表测线长度的一半。4.t0 时间特性:它是时距曲线在 t 轴上的截距。 t0=2h/v, 又称回声时间、自激自收时间、界面法线 的双程旅行时。由 h=v*t0/ 2, 可确定炮点处界面的法线深度。5.直达波时距曲线 (t=x/v) 是反射波时距曲线的渐近线。因为当x 很大时,直达波传播路径长度OS 逐渐接近反射波路径长度 OBS。在同一接收点直达波总是比反射波先到达。因此,反射波时距 曲线总是位于直达波时距曲线的上方,且随着 x 的增大,直达波时距曲线逐渐靠近反射波时距曲 线,但两者总不会相交。注:直达波时距曲线 (t=x/v) 是通过原点,斜率为
49、 1/v 的两条直线。所谓直达波是指地震波从震源出发直接到达各检波器的地震波。在地震记录上各道开始起跳点就是直达波。地震波从 O 点激发,经过界面同一共反射点(2h)2 x2t 2 t02R反射,到达地面接收点 S的传播时间 t 为: 2x2vv 共中心点时距曲线方程在形式上与共炮点时距曲线方程完全一致,故也是一条双曲线。 双曲线对称于 t 轴,其极小点位于共中心点 M 的正上方,即tmin= t0 = 2h / v3(二 ) 共炮点 CSP时距曲线特点1.时距曲线为一条双曲线,且以 x=xmin 为对称轴。x xmin 2hsin其中: 为界面的视倾角,即射线平面内反射界面与地面的夹角。一般
50、情况下野外测线并非完全沿着地层倾向方向布置,此时视倾角并不等于地层的真倾角。2.时距曲线的极小点总是位于界面的上倾方向,且在虚震源O* 的正上方。极小点坐标为:xmin 2hsin ,tmin 2hcos /v所以,随界面埋藏深度 h 和视倾角的增大,极小点往界面上倾方向偏移的就越厉害。3.时距曲线在 t 轴上的截距仍是 t0=2h/v (自激自收时间、回声时间或界面法线双程旅行时) ,且t0tmin,如果已知 t0 、 v,则可通过时深转换求取炮点处界面的法线深度h=v*t0/ 2。420Copyright reserved by Gui qianzhuang.061113共中心点 CMP
51、时距曲线特点1.倾斜界面 CMP反射波时距曲线方程与水平界面CMP 时距曲线方程, 在形式上完全一样, 仍是一条对称于 t 轴的双曲线。所不同的是速度有差异,水平界面时速度 v 为均一的常数值,而倾斜界 面 的等 效速度 (Equivalent velocity)是变 化的, 界面视倾 角 越大, 等效速 度就越大 。当 时, 。2.时距曲线极小点 tmin 总是位于共中心点 M 点处,其值 tmin=t0= 2h0/v ,据此,同样可求出共中 心点 M 处界面的法线深度 h0,从而达到时深转换的目的。5(四 ) 多层介质时距曲线方程的特点由于不同分界面对应的均匀替代层不同,时距曲线也就不同。
52、因此 ,多层水平介质情况下会得到一系列时距曲线 ,组成时距曲线族。它们都是以时间轴t为对称的一族双曲线。对于同一个反射界面 ,随着炮检距 x的增大 ,时距曲线族变得越来越陡。对于同一接收点的不同反射界面 ,随界面埋藏深度的增加 ,时距曲线族变得越来越平缓。(4) 由于平均速度在远离震源处是对实际介质的粗糙近似,因此只有在震源附近时距曲线族才可近似视为双曲线 ,炮检距稍微增大 ,简化介质的时距曲线就比真实介质的时距曲线要 陡,误差较大。由于实际水平层状介质的时距曲线均为高次曲线,因此在远离震源处时距曲线族中的曲(n)t0(n) 为一次反射波 t0 时间的 n线将相互相交。二者时距曲线形式完全一样
53、,都是双曲线,但两者的物理含义完全不同。术语反映界面t0 含义不同动校正含义不同范围不同CSP一段界面炮点 O 处界面的 法向反射时间正常时差:各道反射时间与炮点处 t0 时间之差 , tn=tn-t0 动校正后各记录道的时间相当于各炮 检距中点处的 t0 时间CMP (CRP) (CDP)一个共反射点共中心点 M 处 界面的法向反射 时间正常时差: 各道反射时间与共中心点 M 处 t0 时间之差 , tn=tn-t0 动校正后各叠加道的时间都将被校正 成共中心点 M 处的 t0 时间2. 当界面 R 的视倾角 较小时,全程多次反射波自激自收时间 (n)倍,即 t0(n) n t0。3 同一界
54、面的全程多次波时距曲线极小点位置向界面上倾方向偏移比一次反射波厉害得多。21全程 n 次反射波假想等效界面 R的视倾角为实际界面 R的视倾角的 n 倍,Copyright reserved by Gui qianzhuang.061113在相同 t0 时间的情况下,多次反射波时距曲线比一次反射波时距曲线要陡,这是能压制多次波的根本原因。因为在相同 t0 时间时,多次波反射界面深度比一次波反射界面深度浅,因此多次波的速度值比一次波速度值小。根据正常时差计算公式tn x2 /(2t0v2)可知,多次波正常时差比一次波要大。8地震波在地下岩层中传播,当遇到断层的断棱,地层尖灭点,凸界面顶点等突变点时
55、,这些突变点会成为 新震源而产生一种新的球面波向四周传播。这种波在地震勘探中称为绕射波(Diffraction Waves),形成新震源的点叫做绕射点。最为典型的是断棱绕射波,在地震资料解释中对识别断层具有重要意义。断棱绕射波时距曲线的特点1.绕射波时距曲线为一条双曲线。2.绕射波时距曲线极小点始终位于绕射点D 的正上方,与炮点位置无关,可根据极小点的位置确定断点的在测线不同位置 O1和 O2激发时,所得绕射波时距曲线互相平行,两者相差一个固定的时差 t (O2D O1D)/v 两条时距曲线的形状和极小点在地面上的位置不变(始终位于断棱绕射点 D 的正上方 )。绕射波的自激自收时间 t0 是从
56、炮点到绕射点之间的双程旅行时,且有两炮点处自激自收时间 t01 和 t02之和等于互换时间 tr 的二倍。 t t2O1D 2O2Dvv2(O1D O2D)绕射波时距曲线与同深度界面的反射波时距曲线在x=2d 点上彼此相切。因为此时绕射波和反射波具有相同的传播路径 O1DS,且盖层速度 v 又相同,故绕射波和反射波到达 S 点的时间相同。x=2d之外的其它除 x=2d 点之外,绕射波时距曲线总是位于同深度界面反射波时距曲线之上。因为在除 点,绕射波传播时间总是大于反射波传播时间。绕射波时距曲线比具有相同 t0 时间(相同深度 )的反射波时距曲线更陡, 并且在震源点附近 (x较小 ),绕射 波正
57、常时差比反射波正常时差大一倍。22如果对反射波和绕射波时距曲线同样进行正常时差校正(动校正 ),就会出现反射波时距曲线能被校正平,Copyright reserved by Gui qianzhuang.061113而绕射波时距曲线仍然会向上弯曲的现象。9.反射波的产生:如果在地下 z=H 处存在一个速度突变的界面,其上覆地层为线性连续介质。 当入射角较大时,入射波在连续介质中的回折深度 zm 小于界面深度 H,不会遇到界面,不会产生 反射波。随着入射角的逐渐减小,其回折深度越来越大,当回折深度 zm=H 时,开始产生反射波;此后, 所有 zmH 的回折波在尚未回折之前即遇到反射界面发生反射,
58、产生反射波。10视倾角、真倾角与测线方位角之间的关系为sin cos sin设倾斜反射界面 R与地面 Q的夹角为,称为真倾角。地面测线方向为 X方向 ,它与地层倾向方向的夹角为 ,称为测线方位角。根据斯奈尔定律,包含测线 X 且垂直反射界面 R 的平面,称为射线平面。 射线平面内测线与界面的夹角为 ,称为视倾角。当测线方向与地层倾向一致时,0 ,此时视倾角等于真倾角当测线方向与地层倾向垂直时,900 ,此时视倾角等于零:。当测线方向沿任意方向布置时,视倾角: 0。11法线深度和真深度的关系由震源点 O 垂直地面作直线与界面相交所得的深度,称为界面的真深度(或铅直深度 )。由震源点 OH 和法线
59、深度 h 二者的关系为垂直界面作直线与界面相交所得的深度,称为界面的法线深度。真深度h cos当地层水平时, 0 ,真深度和法线深度相等;当地层倾斜时,二者不相等。对接收到的时距曲线 (均为双曲线 ) 要进行正常时差校正:1、 正常时差定义 ( ) (必考)2、正常时差物理含义 ( ) (必考)3、正常时差近似计算公式的推导,并利用它分析多层水平层状介质时距曲线族在横向和纵向上的变化规 律 () (必考)4、正常时差校正 (动校正 )定义 ()5、动校正 “动”的含义 ( ) TOC o 1-5 h z 6、动校正的目的:将一次反射波双曲线同相轴校平,突出有效波,压制多次反射波和绕射波等干扰波
60、(因为在相同 t0时间的情况下,它们的时距曲线都比一次反射波的陡) ()7、速度误差对动校正结果的影响( )8、动校正容易出现的问题为动校正拉伸( )9、多次覆盖技术的定义 ( )23 Copyright reserved by Gui qianzhuang.0611131任一接收点反射波走时 tn 与它的 t0 时间之差,称为正常时差,用 tn 表示,即 tn=tn-t0 。正常时差的 近似计算公式为: tn =x2/(2t0v2)物理意义: 在水平界面情况下, 各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差。.在横向上,对于同一个反射界面:由于t0 与 v相同,正常时差与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简要介绍农艺师考试的知识更新机制 新颖试题及答案
- 强化2024年农艺师考试参与者的协作精神 互助试题及答案
- 2024年福建事业单位考试的定义与说明试题及答案
- 游戏测试笔试题目及答案
- 我在未来等你(教学设计)2023-2024学年初三下学期教育主题班会
- 2024年园艺师考试的成功法则试题及答案
- 福建事业单位考试各类题型的复习策略分析试题及答案
- 美育音乐鉴赏考试题及答案
- 南顺集团面试题及答案
- 农艺师知识体系构建试题及答案启示
- 学习通《《诗经》导读》习题(含答案)
- 2025-2030智能代步车产业市场现状供需分析及重点企业投资评估规划分析研究报告
- 全媒体内容编辑技巧试题及答案
- 2025届广东省燕博园联考(CAT)高三下学期3月模拟测试物理试题(含答案)
- 2025-2030中国SP导电炭黑市场现状调研与前景研究报告
- 眼视光技术考试题(含答案)
- 垃圾清运合同范本模板
- 2025年“世界水日”活动知识竞赛考试指导题库100题(含答案)
- YS/T 3045-2022埋管滴淋堆浸提金技术规范
- 《煤矿安全生产责任制》培训课件2025
- T-SZSA 030.1-2024 医院及医疗机构建筑空间照明技术规范 第1部分:总规范
评论
0/150
提交评论