华师大版八年级下册数学单元小结与复习课件_第1页
华师大版八年级下册数学单元小结与复习课件_第2页
华师大版八年级下册数学单元小结与复习课件_第3页
华师大版八年级下册数学单元小结与复习课件_第4页
华师大版八年级下册数学单元小结与复习课件_第5页
已阅读5页,还剩140页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、华东师大版八年级下册精品课件本课件来源于网络只供免费交流使用小结与复习 八年级数学下(HS) 教学课件第16章 分式要点梳理考点讲练课堂小结课后作业要点梳理一、分式1.分式的概念: 一般地,如果A、B都表示整式,且B中含有字母,那么称 为分式.其中A叫做分式的分子,B为分式的分母.2.分式有意义的条件:对于分式 :当_时分式有意义;当_时分式无意义.B0B=03.分式值为零的条件:当_时,分式 的值为零.A=0且 B04.分式的基本性质:5.分式的约分:约分的定义根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分最简分式的定义分子与分母没有公因式的式子,叫做最简分式注意:分

2、式的约分,一般要约去分子和分母所有的公因式,使所得的结果成为最简分式或整式.约分的基本步骤(1)若分子分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;(2)若分子分母含有多项式,则先将多项式分解因式,然后约去分子分母所有的公因式6.分式的通分:分式的通分的定义根据分式的基本性质,使分子、分母同乘适当的整式(即最简公分母),把分母不相同的分式变成分母相同的分式,这种变形叫分式的通分.最简公分母为通分先要确定各分式的公分母,一般取各分母的所有因式的最高次幂的积作公分母,叫做最简公分母.二、分式的运算1.分式的乘除法则:2.分式的乘方法则:3.分式的加减法则:(1)同分母分式的加减

3、法则:(2)异分母分式的加减法则:4.分式的混合运算: 先算乘方,再算乘除,最后算加减,有括号的先算括号里面的.计算结果要化为最简分式或整式三、分式方程1.分式方程的定义分母中含未知数的方程叫做分式方程.2.分式方程的解法(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程.(2)解这个整式方程.(3)把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去. 3.分式方程的应用列分式方程解应用题的一般步骤(1)审:清题意,并设未知数; (2)找:相等关系;(3)设:未知数;(4)列:出方程;(5)解:这个分式方程;(6)验:根(包括两方面 :是

4、否是分式方程的根; 是否符合题意);(7)写:答案.考点一 分式的有关概念例1 如果分式 的值为0,那么x的值为 .【解析】根据分式值为0的条件:分子为0而分母不为0,列出关于x的方程,求出x的值,并检验当x取某值时分式的分母的值是否为零.由题意可得:x2-1=0, 解得x=1.当x=-1时,x+1=0;当x=1时,x+1 0.考点讲练1分式有意义的条件是分母不为0,分式无意义的条件是分母的值为0;分式的值为0的条件是分子为0而分母不为0.归纳总结针对训练2.如果分式 的值为零,则a的值为 .21.若分式 无意义,则x的值为 .-3考点二 分式的性质及有关计算B例2 如果把分式中的x和y的值都

5、扩大为原来的3倍,则分式的值()A.扩大为原来的3倍 B.不变C.缩小为原来的 D.缩小为原来的针对训练C3.下列变形正确的是( )例3 已知x= ,y= ,求 值.【解析】本题中给出字母的具体取值,因此要先化简分式再代入求值.把x= ,y= 代入得解:原式= 原式=对于一个分式,如果给出其中字母的取值,我们可以先将分式进行化简,再把字母的值代入,即可求出分式的值.但对于某些分式的求值问题,却没有直接给出字母的取值,而只是给出字母满足的条件,这样的问题较复杂,需要根据具体情况选择适当的方法.归纳总结4.有一道题:“先化简,再求值: ,其中 ”.小玲做题时把 错抄成 ,但她的计算结果也是正确的,

6、请你解释这是怎么回事?针对训练解:所以结果与x的符号无关例4解析:本题可以先求出a的值,再代入求值,但显然现在解不出a的值;不过如果将 的分子、分母颠倒过来,即求 的值,再利用公式变形求值就简单多了利用x和1/x互为倒数的关系,沟通已知条件与所求未知代数式的关系,可以使一些分式求值问题的思路豁然开朗,使解题过程简洁归纳总结5.已知x2-5x+1=0,求出 的值.解:因为x2-5x+1=0, 得 即 所以针对训练考点三 分式方程的解法例5 解下列分式方程:【解析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解解:(1)去分母得x+1+x1=0,解得x=0

7、, 经检验x=0是分式方程的解; (2)去分母得x4=2x+23,解得x=3, 经检验x=3是分式方程的解解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根归纳总结解:最简公分母为(x+2)(x2),去分母得(x2)2(x+2)(x2)=16,整理得4x+8=16,解得x=2,经检验x=2是增根,故原分式方程无解针对训练考点四 分式方程的应用例6 从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍(1)求普通列车的行驶路程;解:(1)根据题意得4001.3520(千米)答:普通列车的行驶路程是5

8、20千米;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间短3小时,求高铁的平均速度解:设普通列车的平均速度是x千米/时,则高铁的平均速度是2.5x千米/时,根据题意得解得x120,经检验x120是原方程的解,则高铁的平均速度是1202.5300(千米/时)答:高铁的平均速度是300千米/时针对训练7.某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x米,则依题意列出正确的方程为( )A.B.C.D.C8. 某商店第一次用600元购进2B铅笔若干支,第二次又

9、用600元购进该款铅笔,但这次每支的进价是第一次进价的 倍,购进数量比第一次少了30支.求第一次每支铅笔的进价是多少元?解:设第一次每支铅笔进价为x元,根据题意列方程,得解得 x=4.经检验,x=4是原分式方程的解.答:第一次每支铅笔的进价为4元.考点五 本章数学思想和解题方法主元法例7.已知: ,求 的值.【解析】已知等式可以变形为用b来表示a的式子,可得 ,代入所求代数式约分即可求值.解: , . 已知字母之间的关系式,求分式的值时,可以先用含有一个字母的代数式来表示另一个字母,然后把这个关系式代入到分式中即可求出分式的值.这种方法即是主元法,此方法是在众多未知元之中选取某一元为主元,其余

10、视为辅元.那么这些辅元可以用含有主元的代数式表示,这样起到了减元之目的,或者将题中的几个未知数中,正确选择某一字母为主元,剩余的字母视为辅元,达到了化繁入简之目的,甚至将某些数字视为主元,字母变为辅元,起到化难为易的作用.归纳总结解:由 ,得 , 把 代入可得原式=9.已知 ,求 的值.本题还可以由已知条件设x=2m,y=3m.针对训练分式分式分式的定义及有意义的条件等分式方程分式方程的应用行程问题、工程问题、销售问题等分式的运算及化简求值分式方程的定义分式方程的解法课堂小结步骤一审二设三列四解五检六写,尤其不要忘了验根类型见 本章小结与复习课后作业华东师大版八年级下册精品课件本课件来源于网络

11、只供免费交流使用小结与复习要点梳理考点讲练当堂练习课堂小结 八年级数学下(HS) 教学课件第17章 函数及其图象要点梳理1. 常量与变量 叫变量, 叫常量.2.函数定义:取值发生变化的量取值固定不变的量 在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.一、函数 3.函数的图象:对于一个函数,如果把自变量与函数的每对对应值分别作为点的横坐标和纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.列表法解析法图象法.5.函数的三种表示方法:4.描点法画图象的步骤:列表、描点、连线一次函数一般地,如果y k

12、 xb (k、b是常数,k0),那么y叫做x的一次函数.正比例函数特别地,当b_时,一次函数yk xb变为y _(k为常数,k0),这时y叫做x的正比例函数.0kx二、一次函数1.一次函数与正比例函数的概念2.分段函数 当自变量的取值范围不同时,函数的解析式也不同,这样的函数称为分段函数.函数字母系数取值( k0 )图象经过的象限函数性质ykx+b(k0) b0y随x增大而增大 b=0 b0第一、三象限 第一、二、三象限 第一、三、四象限 3.一次函数的图象与性质函数字母系数取值( k0y随x增大而减小b0b0第一、二、四象限 第二、四象限 第二、三、四象限 求一次函数解析式的一般步骤:(1)

13、先设出函数解析式;(2)根据条件列关于待定系数的方程(组);(3)解方程(组)求出解析式中未知的系数;(4)把求出的系数代入设的解析式,从而具体写出这个解析式.这种求解析式的方法叫待定系数法.4.用待定系数法求一次函数的解析式求ax+b=0(a,b是常数,a0)的解 x为何值时,函数y= ax+b的值为0? 从“数”的角度看求ax+b=0(a, b是 常数,a0)的解 求直线y= ax+b与 x 轴交点的横坐标 从“形”的角度看(1)一次函数与一元一次方程5.一次函数与方程 一般地,任何一个二元一次方程都可以转化为一次函数y=kx+b(k、b为常数,且k0)的形式,所以每个二元一次方程都对应一

14、个一次函数,也对应一条直线(2)一次函数与二元一次方程方程的解 对应直线点的坐标.1. 反比例函数的概念定义:形如_ (k为常数,k0) 的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数三种表示方法: 或 xyk 或ykx1 (k0)防错提醒:(1)k0;(2)自变量x0;(3)函数y0.三、反比例函数2. 反比例函数的图象和性质 (1) 反比例函数的图象:反比例函数 (k0)的 图象是 ,它既是轴对称图形又是中心 对称图形. 反比例函数的两条对称轴为直线 和 ; 对称中心是: .双曲线原点y = xy=x(2) 反比例函数的性质 图象所在象限性质(k0)k0第一、三象限(x,

15、y同号)在每个象限内,y 随 x 的增大而减小k0第二、四象限(x,y异号)在每个象限内,y 随 x 的增大而增大xyoxyo(3) 反比例函数比例系数 k 的几何意义 k 的几何意义:反比例函数图象上的点 (x,y) 具有两坐标之积 (xyk) 为常数这一特点,即过双曲线上任意一点,向两坐标轴作垂线,两条垂线与坐标轴所围成的矩形的面积为常数 |k|.规律:过双曲线上任意一点,向两坐标轴作垂线,一条垂线与坐标轴、原点所围成的三角形的面积为常数 3. 反比例函数的应用利用待定系数法确定反比例函数: 根据两变量之间的反比例关系,设 ; 代入图象上一个点的坐标,即 x、y 的一对 对应值,求出 k

16、的值; 写出解析式.考点讲练考点一 函数的有关概念及图象例1 王大爷饭后出去散步,从家中走20分钟到离家900米的公园,与朋友聊天10分钟后,用15分钟返回家中下面图形表示王大爷离家时间x(分)与离家距离y(米)之间的关系是( )ABCDDOOOO针对训练1.下列变量间的关系不是函数关系的是( )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径C2.函数 中,自变量x的取值范围是( )A.x3 B.x3 C.x3 D.x-3B3.星期天下午,小强和小明相约在某公交车站一起乘车回学校,小强从家出发先步行到车站,等小明到后两人一起乘公共汽车回到学校

17、图中折线表示小强离开家的路程y(千米)和所用的时间x(分)之间的函数关系图象下列说法错误的是( )A小强从家到公共汽车站步行了2千米B小强在公共汽车站等小明用了10分钟C公交车的平均速度是34千米/时D小强乘公交车用了30分钟Cx(分)y(千米)考点二 一次函数的图象与性质例2 已知函数y=(2m+1)x+m3;(1)若该函数是正比例函数,求m的值;(2)若函数的图象平行于直线y=3x3,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围;(4)若这个函数图象过点(1,4),求这个函数的解析式.【分析】(1)由函数是正比例函数得m-3=0且2m+10;(2)由两直线平

18、行得2m+1=3;(3)一次函数中y随着x的增大而减小,即2m+10;(4)代入该点坐标即可求解.解:(1)函数是正比例函数,m3=0,且2m+10, 解得m=3; (2)函数的图象平行于直线y=3x3,2m+1=3, 解得m=1; (3)y随着x的增大而减小,2m+10,解得m (4)该函数图象过点(1,4),代入得2m+1+m-3=4, 解得m=2,该函数的解析式为y=5x-1. 一次函数y=kx+b中b=0时,该函数为正比例函数;两条直线平行,其函数解析式中的自变量系数k相等;当k0时,y随x的增大而增大,当k0时,y随x的增大而减小.方法总结针对训练4.一次函数y=-5x+2的图象不经

19、过第_象限.5.点(-1,y1),(2,y2)是直线y=2x+1上两点,则y1_y2.三6.填空题: 有下列函数: , , , . 其中函数图象过原点的是_;函数y随x的增大而增大的是_;函数y随x的增大而减小的是_;图象在第一、二、三象限的是_.xy2=考点三 一次函数与一次方程例3 如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的方程x+b=kx+4的解是( )yxOy1=x+by2=kx+4PAx=2Bx=0Cx=1Dx=-1【分析】观察图象,两图象交点为P(1,3),当x=1时,y1=y2,据此解题即可.13C针对训练7.方程x+2=0的解就是函数

20、y=x+2的图象与( )A.x轴交点的横坐标 B.y轴交点的横坐标C.y轴交点的纵坐标 D.以上都不对8.两个一次函数y=-x+5和y=-2x+8的图象的交点坐标是 _.A(3,2)(1)问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个 A 种造型的成本是 800 元,搭配一个 B 种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?例4 为美化深圳市景,园林部门决定利用现有的 3490 盆甲种花卉和 2950 盆乙种花卉搭配 A、B 两种园艺造型共 50 个摆放在迎宾大道两侧,已知搭配一个 A 种造型需甲种花卉 80 盆,乙种花卉 40 盆,搭配一个 B

21、种造型需甲种花卉 50 盆,乙种花卉 90 盆考点四 一次函数的应用解:设搭配 A 种造型 x 个,则 B 种造型为(50 x)个,依题意,得31x33.x 是整数,x 可取 31,32,33,可设计三种搭配方案:A 种园艺造型 31 个,B 种园艺造型 19 个;A 种园艺造型 32 个,B 种园艺造型 18 个;A 种园艺造型 33 个,B 种园艺造型 17 个方案需成本:318001996043040(元);方案需成本:328001896042880(元);方案需成本:338001796042720(元)(2)方法一:方法二:成本为y800 x960(50 x)160 x48000(31

22、x33)根据一次函数的性质,y 随 x 的增大而减小,故当 x33 时,y 取得最小值为338001796042720(元)即最低成本是 42720 元 用一次函数解决实际问题,先理解清楚题意,把文字语言转化为数学语言,列出相应的不等式(方程),若是方案选择问题,则要求出自变量在取不同值时所对应的函数值,判断其大小关系,结合实际需求,选择最佳方案.方法总结9.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是多少升?针对训练解:设一次函数的解析式为ykx35,将(160,25)代入,得160k35

23、25,解得k ,所以一次函数的解析式为y x35.再将x240代入 y x35,得y 2403520,即到达乙地时油箱剩余油量是20升 10.小星以2米/秒的速度起跑后,先匀速跑5秒,然后突然把速度提高4米/秒,又匀速跑5秒.试写出这段时间里他的跑步路程s(单位:米)随跑步时间x(单位:秒)变化的函数关系式,并画出函数图象.解:依题意得s=2x(0 x5) 6x-20 (5x10)100s(米)50 x(秒)4010s(米)105x(秒)x(秒)s(米)O5101040s=2x (0 x5) s=6x-20 (5x10)例5 已知点 A(1,y1),B(2,y2),C(3,y3) 都在反比例函

24、数 的图象上,则y1,y2,y3的大小关系是 ( )A. y3y1y2 B. y1y2y3C. y2y1y3 D. y3y2y1解析:方法分别把各点代入反比例函数求出y1,y2,y3的值,再比较出其大小即可方法:根据反比例函数的图象和性质比较考点五 反比例函数的图象和性质D 11. 已知点 A (x1,y1),B (x2,y2) (x10 x2)都在反比例函数 (k 2 时,y 与 x 的函数解析式;解:当 x 2时,y 与 x 成反比例关系, 所以设解得 k 8.由于点 (2,4) 在反比例函数的图象上,所以即Oy/毫克x/小时24(3) 若每毫升血液中的含药量不低于 2 毫克时治疗有 效,

25、则服药一次,治疗疾病的有效时间是多长?解:当 0 x2 时,含药量不低于 2 毫克,即 2x2, 解得x1,1x2; 当 x2 时,含药量不低于 2 毫克,即 2,解得 x 4. 2 x 4.所以服药一次,治疗疾病的有效时间是 123 (小时)Oy/毫克x/小时2412.如图所示,制作某种食品的同时需将原材料加热,设该材料温度为y,从加热开始计算的时间为x分钟据了解,该材料在加热过程中温度y与时间x成一次函数关系已知该材料在加热前的温度为4,加热一段时间使材料温度达到28时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间 x 成反比例函数关系,已知第 12 分钟时,材料温度是14针对训

26、练Oy()x(min)1241428(1) 分别求出该材料加热和停止加热过程中 y 与 x 的函 数关系式(写出x的取值范围);Oy()x(min)1241428答案:y = 4x + 4 (0 x 6), (x6). (2) 根据该食品制作要求,在材料温度不低于 12 的 这段时间内,需要对该材料进行特殊处理,那么 对该材料进行特殊处理的时间为多少分钟?解:当y =12时,y =4x+4,解得 x=2 由 ,解得x =14. 所以对该材料进行特殊 处理所用的时间为 142=12 (分钟)Oy()x(min)1241428课堂小结 实际问题 函数 建立函数模型 定义 自变量取值范围 表示法 一

27、次函数 y=kx+b(k0) 应用 图象:一条直线 性质: k0,y 随x 的增大而增大 k0,y 随x 的增大而减小数形结合 一次函数与一次方程之间的关系课堂小结反比例函数定义图象性质x,y 的取值范围增减性对称性k 的几何意义应用在实际生活中的应用在物理 中的应用见 本章小结与复习课后作业华东师大版八年级下册精品课件本课件来源于网络只供免费交流使用小结与复习 八年级数学下(HS) 教学课件第18章 平行四边形要点梳理考点讲练课堂小结课后作业几 何 语 言文字叙述对边平行对边相等对角相等 AD=BC ,AB=DC. 四边形ABCD是平行四边形, A=C, B=D. 四边形ABCD是平行四边形

28、, 一、平行四边形的性质要点梳理对角线互相平分 四边形ABCD是平行四边形, OA=OC,OB=OD. 四边形ABCD是平行四边形, ADBC ,ABDC.平行四边形是中心对称图形.ABCDO 几 何 语 言文字叙述两组对边相等一组对边平行且相等 四边形ABCD是平行四边形, AD=BC ,AB=DC. 四边形ABCD是平行四边形, AB=DC,ABDC.二、平行四边形的判定对角线互相平分 四边形ABCD是平行四边形, OA=OC,OB=OD.两组对边分别平行(定义)四边形ABCD是平行四边形, ADBC ,ABDC.平行线之间的距离处处相等ABCDO 考点一 平行四边形的性质考点讲练例1 如

29、图,在平行四边形ABCD中,下列结论中错误的是()A1=2 BBAD=BCDCAB=CD DAC=BC D针对训练1.如图,已知ABCD中,AE平分BAD,CF平分BCD,分别交BC、AD于E、F求证:AF=EC证明:四边形ABCD是平行四边形,B=D,AD=BC,AB=CD,BAD=BCD,AE平分BAD,CF平分BCD,EAB= BAD,FCD= BCD,EAB= FCD,在ABE和CDF中 BD ABCD ABECDF,BE=DF EABFCD AD=BC AF=EC例2 如图,在ABCD中,ODA=90,AC=10cm,BD=6cm,则AD的长为()A4cm B5cm C6cm D8c

30、m 【解析】四边形ABCD是平行四边形,AC=10cm,BD=6cmOA=OC= AC=5cm,OB=OD= BD=3cm,ODA=90,AD= =4cmA方法总结 主要考查了平行四边形的性质之平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.【解析】在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,CO=12cm,BO=19cm,AD=BC=28cm,BOC的周长是:BO+CO+BC=12+19+28=59(cm)针对训练2.如图,在ABCD中,对角线AC和BD交于点O,AC=24cm,BD=38cm,AD=28cm,则BOC的周长是()A45c

31、m B59cm C62cm D90cm B考点二 平行四边形的判定例3 如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()AOA=OC,OB=OD BBAD=BCD,ABCD CADBC,AD=BC DAB=CD,AO=CO D 平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形.方法总结针对训练3.如图,点D、C在BF上,ACDE,A=E,BD=CF,(1)求证:AB=EF(1)证明:ACDE,A

32、CD=EDF,BD=CF,BD+DC=CF+DC,即BC=DF,又A=E,ABCEFD(AAS),AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知ABCEFD,B=F,ABEF,又AB=EF,四边形ABEF为平行四边形(一组对边平行且相等的四边形是平行四边形).考点三 平行四边形性质和判定的综合应用例4 如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF求证:四边形AECF是平行四边形证明:四边形ABCD是平行四边形,ADBC,且AD=BC,AFEC,BE=DF,AF=EC,四边形AECF是平行四边

33、形针对训练4.如图,已知凸五边形ABCDE的边长均相等,且DBE=ABE+CBD,AC=1,则BD必定满足()ABD2 BBD=2CBD2 D以上情况均有可能解析:AE=AB,ABE=AEB,同理CBD=CDB.ABE+CBD=DBE,AEB+CDB=DBE,AED+CDE=180,AECD,AE=CD,四边形AEDC为平行四边形DE=AC=AB=BCABC是等边三角形,BC=CD=1,在BCD中,BDBC+CD,BD2故选A平 行 四 边 形性质对边平行且相等对角相等,邻角互补对角线互相平分判定两组对边分别平行的两组对边分别相等的一组对边平行且相等的对角线互相平分的四 边 形平 行 四 边

34、形课堂小结课后作业见 本章热点专练练习华东师大版八年级下册精品课件本课件来源于网络只供免费交流使用小结与复习第19章 矩形、菱形与正方形 八年级数学下(HS) 教学课件要点梳理考点讲练课堂小结课后作业一、几种特殊四边形的性质 项目四边形边角对角线对称性对边平行且相等对边平行且相等对边平行且四边相等对边平行且四边相等对角相等四个角都是直角对角相等四个角都是直角互相平分互相平分且相等互相垂直平分且相等,每一条对角线平分一组对角轴对称图形中心对称图形轴对称图形中心对称图形轴对称图形中心对称图形互相垂直且平分,每一条对角线平分一组对角中心对称图形 四边形条件平行四边形矩形菱形正方形二、几种特殊四边形的

35、常用判定方法:1.定义:两组对边分别平行 2.两组对边分别相等 3.两组对角分别相等 4.对角线互相平分5.一组对边平行且相等 1.定义:有一个角是直角的平行四边形 2.对角线相等的平行四边形3.有三个角是直角的四边形1.定义:一组邻边相等的平行四边形 ;2.对角线互相垂直的平行四边形,3.四条边都相等的四边形1.定义:一组邻边相等且有一个角是直角的平行四边形2.有一组邻边相等的矩形 3.有一个角是直角的菱形5种判定方法三个角是直角四条边相等一个角是直角或对角线相等一组邻边相等或对角线垂直一组邻边相等或对角线垂直一个角是直角或对角线相等一个角是直角且一组邻边相等三、平行四边形、矩形、菱形、正方

36、形之间的关系例1:如图,在矩形ABCD中,两条对角线相交于点O,AOD=120,AB=2.5 ,求矩形对角线的长.解:四边形ABCD是矩形. AC = BD(矩形的对角线相等). OA= OC= AC,OB = OD = BD ,(矩形对角线相互平分)OA = OB.ABCDO考点一 矩形的性质和判定考点讲练ABCDOAOD=120,AOB=60.AOB为等边三角形, BD = 2OB =2AB =2 2.5 = 5.1.如图,在ABCD中,对角线AC与BD相交于点O , ABO是等边三角形, AB=4,求ABCD的面积.解:四边形ABCD是平行四边形,OA= OC,OB = OD.又ABO是

37、等边三角形,OA= OB=AB= 4,BAC=60.AC= BD= 2OA = 24 = 8.ABCDO针对训练ABCD是矩形 (对角线相等的平行四边形是矩形).ABC=90(矩形的四个角都是直角) . 在RtABC中,由勾股定理,得BC= .SABCD=ABBC=4 =ABCDO2.如图,O是菱形ABCD对角线的交点,作BEAC,CEBD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.DABCEO解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形. ACBD. BOC=90. BEAC,CEBD, 四边形CEBO是平行四边形. 四边形CEBO是矩形(有一个角是直角的平行

38、四边形是矩形).考点二 菱形的性质与判定例2 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AEBD,过点D作EDAC,两线相交于点E求证:四边形AODE是菱形;证明:AEBD,EDAC,四边形AODE是平行四边形.四边形ABCD是矩形,AC=BD,OA=OC= AC, OB=OD= BD,OA=OD,平行四边形AODE是菱形.【变式题】如图,O是菱形ABCD对角线的交点,作BEAC,CEBD,BE、CE交于点E,四边形CEBO是矩形吗?说出你的理由.DABCEO解:四边形CEBO是矩形.理由如下:已知四边形ABCD是菱形. ACBD. BOC=90. BEAC,CEBD, 四边

39、形CEBO是平行四边形. 四边形CEBO是矩形.证明:在AOB中.AB= , OA=2,OB=1. AB2=AO2+OB2. AOB是直角三角形, AOB是直角. ACBD. ABCD是菱形 (对角线垂直的平行四边形是菱形).3. 已知:如右图,在ABCD中,对角线AC与BD相交于点O, AB= ,OA=2,OB=1. 求证: ABCD是菱形.ABCOD针对训练4.如图,两张等宽的纸条交叉重叠在一起,猜想重叠部分的四边形ABCD是什么形状?说说你的理由.ABCDEF解:四边形ABCD是菱形.过点C作AB边的垂线,垂足为E,作AD边上的垂线,垂足为F.S 四边形ABCD=AD CF =AB CE

40、 .由题意可知 CE = CF 且 四边形ABCD是平行四边形.AD = AB . 四边形ABCD是菱形.在学习菱形的判定时,我们用全等解过此题,现在能否换一种方法解答呢?例3 如图,已知在四边形ABFC中,ACB90,BC的垂直平分线EF交BC于点D,交AB于点E,且CFAE;(1)试判断四边形BECF是什么四边形?并说明理由;(2)当A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论解:(1)四边形BECF是菱形理由如下:EF垂直平分BC,BFFC,BEEC,31.ACB90,3490,1290,24,考点三 正方形的性质和判定ECAE,BEAE.CFAE,BEECCFB

41、F,四边形BECF是菱形;(2)当A45时,菱形BECF是正方形证明如下:A45,ACB90,CBA45,EBF2CBA90,菱形BECF是正方形方法总结 正方形的判定方法:先判定四边形是矩形,再判定这个矩形有一组邻边相等;先判定四边形是菱形,再判定这个菱形有一个角为直角;还可以先判定四边形是平行四边形,再用或进行判定5. 如图,在矩形ABCD中, BE平分ABC , CE平分DCB , BFCE , CFBE.求证:四边形BECF是正方形.FABECD解析:先由两组平行线得出四边形BECF为平行四边形;再由一组邻边相等,得出是菱形;最后由一个直角可得正方形.4545针对训练FABECD证明:

42、 BFCE,CFBE, 四边形BECF是平行四边形. 四边形ABCD是矩形, ABC = 90, DCB = 90, BE平分ABC, CE平分 DCB, EBC = 45, ECB = 45, EBC = ECB . EB=EC, BECF是菱形 . 在EBC中 EBC = 45,ECB = 45, BEC = 90, 菱形BECF是正方形.(有一个角是直角的菱形是正方形)6. 如图,ABC中,点O是AC上的一动点,过点O作直线MNBC,设MN交BCA的平分线于点E,交BCA的外角ACG的平分线于点F,连接AE、AF.(1)求证:ECF90;(2)当点O运动到何处时,四边形AECF是矩形?请

43、 说明理由;(1)证明:CE平分BCO,CF平分GCO,OCEBCE,OCFGCF,ECF 18090.(2)解:当点O运动到AC的中点时,四边形AECF是矩形理由如下:MNBC,OECBCE,OFCGCF.又CE平分BCO,CF平分GCO,OCEBCE,OCFGCF,OCEOEC,OCFOFC,EOCO,FOCO,OEOF.又当点O运动到AC的中点时,AOCO,四边形AECF是平行四边形.ECF90,四边形AECF是矩形.解:当点O运动到AC的中点时,且满足ACB为直角时,四边形AECF是正方形由(2)知当点O运动到AC的中点时,四边形AECF 是矩形,已知MNBC,当ACB90,则AOE9

44、0,即ACEF,矩形AECF是正方形(3)在(2)的条件下,ABC应该满足什么条件时, 四边形AECF为正方形例4 在一个平行四边形中,若一个角的平分线把一条边分成长是2cm和3cm的两条线段,求该平行四边形的周长是多少.解:如图,在平行四边形ABCD中,AB=CD,AD=BC,ADBC,AEB=CBE又ABE=CBE,ABE=AEB,AB=AE(1)当AE=2时,则平行四边形的周长=2(2+3)=10(2)当AE=3时,则平行四边形的周长=3(3+2)=15分类讨论思想 考点四 本章解题思想方法平行四边形的性质与判定中要是出现角平分线,常与等腰三角形的性质和判定结合起来考查,当边指向不明时需

45、要分类讨论,常见的的模型如下:方法总结例5 如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长方程思想 解:(1)由题意得AF=AD=BC=10cm,在RtABF中,AB=8,BF=6cm,FC=BC-BF=10-6=4(cm)(2)由题意可得EF=DE,可设DE的长为x,在RtEFC中,(8-x)2+42=x2,解得x=5,即EF的长为5cm例6 如图,平行四边形ABCD中,AC、BD为对角线,其交点为O,若BC=6,BC边上的高为4,试求阴影部分的面积转化思想 解:四边形ABCD为平行四边形,OA=OC,OB=OD.ABCD,

46、EAO=HCO.又 AOECOH,AEOCHO(ASA),同理可得OAQOCG,OPDOFB,S阴影=SABC,则SABC= S平行四边形ABCD= 64=12EHQGFP四边形的分类及转化有一个角是90(或对角线相等)有一对邻边相等(或对角线互相垂直) 平行四边形矩形菱形正方形一组邻边相等且一个内角为直角(或对角线互相垂直且相等)有一个角是90(或对角线相等)有一对邻边相等(或对角线互相垂直) 课堂小结见 本章小结与复习课后作业华东师大版八年级下册精品课件本课件来源于网络只供免费交流使用小结与复习 八年级数学下(HS) 教学课件第20章 数据的整理与初步处理要点梳理考点讲练课堂小结课后作业要

47、点梳理一、数据的集中趋势平均数 定义 一组数据的平均值称为这组数据的平均数 算术平均数 一般地,如果有n个数x1,x2,xn,那么_叫做这n个数的平均数.加权平均数 一般地,若n个数x1,x2,xn的权分别是w1,w2,wn,则 _叫做这n个数的加权平均数最多中间位置的数两个数据的平均数中位数定义将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于_就是这组数据的中位数,如果数据的个数是偶数,则中间_就是这组数据的中位数防错提醒 确定中位数时,一定要注意先把整组数据按照大小顺序排列,再确定众数定义一组数据中出现次数_的数据叫做这组数据的众数防错提醒(1)一组数据中众数不

48、一定只有一个;(2)当一组数据中出现异常值时,其平均数往往不能正确反映这组数据的集中趋势,就应考虑用中位数或众数来分析二、数据的波动程度平均数 大表示波动的量定义意义方差设有n个数据x1,x2,x3,xn,各数据与它们的_的差的平方分别是(x1x)2,(x2x)2,(xnx)2,我们用它们的平均数,即用_来衡量这组数据的波动大小,并把它叫做这组数据的方差,记作s2方差越大,数据的波动越_,反之也成立考点讲练考点一 平均数、中位数、众数 例1 某市在开展节约用水活动中,对某小区200户居民家庭用水情况进行统计分析,其中3月份比2月份节约用水情况如下表所示: 节水量(m3)11.52户数20120

49、60 请问: 抽取的200户家庭的节水量的平均数是_,中位数是_,众数是_.1.61.51.51.某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg,20 kg,50 kg)的大米的销售量(单位:袋)如下:10 kg装100袋;20 kg装220袋;50 kg装80袋.如果每500 g大米的进价和售价都相同,则他最应该关注的是这些销售数据(袋数)中的( ) A.平均数 B.中位数 C.众数 D.最大值C针对训练A2.一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数、中位数中的( )A1个 B2个C3个D0个3.某地发生地震灾害后,某中学八(1)班学生积极捐款献爱心,如图所示是该班50名学生的捐款情况统计,则他们捐款金额的众数和中位数分别是()A20,10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论